Partitioning net ecosystem carbon exchange with isotopic fluxes of CO₂

DAVID R. BOWLING*, PIETER P. TANS† and RUSSELL K. MONSON*
*Department of Environmental, Population, and Organismic Biology, University of Colorado, Boulder, CO 80309, †Climate Monitoring and Diagnostics Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80303, USA

Abstract

Because biological and physical processes alter the stable isotopic composition of atmospheric CO₂, variations in isotopic content can be used to investigate those processes. Isotopic flux measurements of ¹³CO₂ above terrestrial ecosystems can potentially be used to separate net ecosystem CO₂ exchange (NEE) into its component fluxes, net photosynthetic assimilation (Fₐ) and ecosystem respiration (Fᵣ). In this paper theory is developed to partition measured NEE into Fₐ and Fᵣ, using measurements of fluxes of CO₂ and ¹³CO₂, and isotopic composition of respired CO₂ and forest air. The theory is then applied to fluxes measured (or estimated, for ¹³CO₂) in a temperate deciduous forest in eastern Tennessee (Walker Branch Watershed). It appears that there is indeed enough additional information in ¹³CO₂ fluxes to partition NEE into its photosynthetic and respiratory components. Diurnal patterns in Fₐ and Fᵣ were obtained, which are consistent in magnitude and shape with patterns obtained from NEE measurements and an exponential regression between night-time NEE and temperature (a standard technique which provides alternate estimates of Fᵣ and Fₐ). The light response curve for photosynthesis (Fₐ vs. PAR) was weakly nonlinear, indicating potential for saturation at high light intensities. Assimilation-weighted discrimination against ¹³CO₂ for this forest during July 1999 was 16.8±17.1‰, depending on canopy conductance. The greatest uncertainties in this approach lie in the evaluation of canopy conductance and its effect on whole-canopy photosynthetic discrimination, and thus the indirect methods used to estimate isotopic fluxes. Direct eddy covariance measurements of ¹³CO₂ flux are needed to assess the validity of the assumptions used and provide defensible isotope-based estimates of the component fluxes of net ecosystem exchange.

Keywords: canopy conductance, carbon dioxide, eddy covariance, forest micrometeorology, net ecosystem exchange, stable isotopes

Received 24 January 2000; revised version received 29 June and accepted 27 August 2000

Introduction

Stable isotopes of carbon dioxide contain unique information about the biological and physical processes that exchange CO₂ between terrestrial ecosystems and the atmosphere. Photosynthesis discriminates against the heavier ¹²C isotope in CO₂, preferentially fixing ¹²CO₂ into plant biomass, with a decrease in isotope ratio of leaf tissue of C₃ plants of nearly 20‰ relative to atmospheric CO₂ (Farquhar et al. 1989). There is apparently no fractionation associated with mitochondrial respiration, and so the isotope ratio of respired CO₂ should reflect that of photoassimilated carbon, which is subsequently used for respiration (Lin & Ehleringer 1997; but see Duranceau et al. 1999). There can, however, be small variations in the carbon isotope ratios of various chemical components of leaves, litter and soil organic matter (Ehleringer et al. 2000; References therein); thus, the isotopic composition of respired CO₂ can vary from that expected on the basis of photosynthetic discrimination alone. Nevertheless, photosynthesis during day-
light hours leaves the air in and near terrestrial ecosystems enriched in 13CO$_2$ and respiration tends to dilute the air of the heavy isotope. This is apparent as a pronounced diurnal cycle in δ^{13}C at the ecosystem scale (Flanagan et al. 1996) and as a seasonal cycle at the global scale (Trollier et al. 1996).

In principle, these natural labels will allow us to independently estimate the fluxes of net photosynthesis (F_A) and ecosystem respiration (F_R). The sum of these opposing processes, net ecosystem CO$_2$ exchange (NEE = $F_R + F_A$, where upward CO$_2$ fluxes are considered positive), is now routinely measured at more than a hundred sites around the world. However, a mechanistic understanding of how photosynthesis and respiration respond to various environmental changes is difficult to achieve when only net fluxes are measured. Three measurement-based approaches are currently used to estimate F_R and F_A at the canopy level. These include scaling up soil, leaf, and stem chamber measurements (Ryan et al. 1996; Law et al. 1999), locating eddy covariance instruments below the canopy to directly measure soil respiration (Baldocchi et al. 1997, 2000), and estimating total ecosystem respiration flux based on regressions of nocturnal NEE vs. temperature (Goulden et al. 1996; many studies since). Each of these methods at present involves considerable uncertainty, and similar results from the different approaches have so far been difficult to obtain (Lavigne et al. 1997). Stable isotopes provide a unique and independent way to examine photosynthetic and respiratory fluxes.

Yakir & Wang (1996) used micrometeorological flux measurements and stable isotopes to separate NEE into photosynthetic and respiratory components in several crops, with simple canopy structure and minimal environmental heterogeneity. The objective of the present paper was to investigate the utility of such an approach in a complex natural system that includes variation in those parameters likely to influence photosynthetic discrimination and the isotopic nature of respired CO$_2$. For example, variation between species, between age classes, and with height in a canopy is now well-established in light, photosynthetic rate, stomatal and hydraulic conductance, leaf nitrogen, and foliar respiration (e.g. Brooks et al. 1991; Ellsworth & Reich 1993; Baldocchi & Collineau 1994; Yoder et al. 1994; Hubbard et al. 1999). Soil moisture varies spatially and can influence soil respiration rates significantly (Davidson et al. 1998), either directly or through differences in nutrient availability and microbial community structure. These factors are likely to influence photosynthetic and respiratory isotope effects within a forest and may substantially complicate isotope partitioning in a natural system.

In this study, equations are developed to separate NEE into its photosynthetic and respiratory components using estimates of the net exchange of 13CO$_2$. Canopy-scale fluxes of 13CO$_2$ are then described in a deciduous forest in eastern Tennessee, and some related assumptions from an earlier study addressed. The goal was not an extensive characterization of the factors influencing δ^{13}C of forest air, but rather to determine whether or not stable isotopic fluxes of 13CO$_2$ could be used to successfully partition NEE in a natural forest. Finally the measured isotopic fluxes are combined with relevant isotopic and meteorological information, and NEE partitioning is discussed in detail.

Theory

Conservation of mass for CO$_2$ and 13CO$_2$ is used to develop equations that can be used to partition net ecosystem exchange. This approach is identical in principle to, but different in final formulation from, those of Yakir & Wang (1996) and Lloyd et al. (1996). Standard definitions for isotopic composition (δ^{13}C), isotope ratio (R), and photosynthetic isotope discrimination (A) from the biological (Farquhar et al. 1989) rather than geochemical (Ciais et al. 1995; Hoefs 1997) literature are used.

Net ecosystem exchange (NEE) is given by conservation of mass for total CO$_2$ (Wofsy et al. 1993)

\begin{equation}
\text{NEE} = \rho \bar{C} \bar{V} + \rho \frac{dC}{dt} = F_R + F_A
\end{equation}

where $\rho \bar{C} \bar{V}$ is total CO$_2$ flux (measured by eddy covariance), the overbar denotes Reynolds averaging, the primes denote fluctuations from this average, F_R is the total respiratory flux of CO$_2$ (from heterotrophs, roots, and stems), F_A the net photosynthetic assimilation of CO$_2$ (gross photosynthetic uptake – leaf respiration), and $\rho dC/dt$ the time rate of change of CO$_2$ mole fraction (C) between ground level (0) and the measurement height (z_m). (A list of symbols used is provided in Table 1.) The convention that upward scalar fluxes are positive is followed; hence, F_A is a negative number during the day. $\rho dC/dt$ is referred to as the storage flux of CO$_2$ and is important when atmospheric stability alters vertical mixing and allows the mean C in the canopy space to change. This term is obtained by measuring C at various heights in and above the canopy and using (2). Following Ruimy et al. (1995) and Lloyd et al. (1996), nocturnal foliar respiration is included in F_R, but daytime foliar respiration is included in F_A (net assimilation).
Conservation of mass for ^{13}C can be applied to expand both equations. Multiplying through by isotope ratio, the following mass balance equations for $^{13}\text{CO}_2$ are obtained

$$\begin{align*}
\rho \frac{d(R_\text{a} C)}{dt} + \rho \frac{d(R_\text{z} C)}{dt} &= R,F_\text{R} + F_\lambda C(\zeta) dz \\
\rho \frac{d(R_\text{a} C)}{dt} &= \rho \frac{d(R_\text{z} C)}{dt} R_\text{a} C(\zeta) dz
\end{align*}$$

(3)

(4)

where $1 + \Delta$ denotes the fractionation factor associated with net photosynthesis, and R_a and R_z refer to the isotope ratios of CO$_2$ in canopy air and respired CO$_2$, respectively. In (3), the left-hand terms represent the net ecosystem exchange of $^{13}\text{CO}_2$, which involve a net eddy flux $\rho \frac{d(R_\text{a} C)}{dt}$ and a storage flux (eqn 4) of $^{13}\text{CO}_2$. The use of absolute isotope ratio ($R = ^{13}\text{C}/^{12}\text{C}$) introduces the approximation $[^{13}\text{CO}_2] = (^{13}\text{C}/^{12}\text{C})[\text{total CO}_2]$, which involves an error of about 1.11% for $^{13}\text{CO}_2$ and is roughly constant with observed atmospheric variation in ^{13}C and [CO$_2$]. Alternatively, the isotope ratio (PDB standard) can be redefined relative to total carbon as $R = ^{13}\text{C}/(^{12}\text{C} + ^{13}\text{C})$, in which case the above relationships are exact (neglecting ^{14}C, Tans et al. 1993). It is assumed herein that canopy air forms the CO$_2$ substrate for photosynthesis, ignoring leaf boundary layer conductance. The assumption is also made that there is no fractionation associated with autotrophic or heterotrophic respiration for $^{13}\text{CO}_2$.

Dividing by the PDB isotope ratio standard, subtracting (1), and converting to conventional δ notation, ignoring terms in Δ^2 or smaller (Lloyd et al. 1996), the following is obtained

$$\begin{align*}
\rho \frac{d(\delta^{13}\text{C}_\text{a} C)}{dt} + \rho \frac{d(\delta^{13}\text{C}_\text{z} C)}{dt} &= \delta^{13}\text{C}_\text{a} F_\text{R} + \delta^{13}\text{C}_\text{a} F_\lambda \\
&= \delta^{13}\text{C}_\text{a} F_\text{R} + \delta^{13}\text{C}_\text{a} F_\lambda (\delta^{13}\text{C}_\text{a} - \Delta)
\end{align*}$$

I II III IV

(5)

Although mass is still conserved by (1) and (5), when using δ notation terms I and II no longer equal the net ecosystem exchange of $^{13}\text{CO}_2$. Instead, their sum is the isoflux of $^{13}\text{CO}_2$, which can be pictured as the product of NEE (of total CO$_2$) and the isotopic composition (expressed in δ units) of that net exchange. This quantity will be consistently referred to as isoflux, where isoflux = eddy isoflux (term I) + storage isoflux (term II). Writing this explicitly,

$$\text{isoflux} = \delta^{13}\text{C}_\text{a} (F_\text{R}) + (\delta^{13}\text{C}_\text{a} - \Delta)F_\lambda.$$

(6)

The eddy isoflux can be estimated using the flux-gradient method over appropriate sites (Yakir & Wang 1996), with hyperbolic relaxed eddy accumulation (Bowling et al. 1999b), or a combination of flask measurements and standard eddy covariance (Bowling et al. 1999a). The storage isoflux can be obtained using flask measurements to characterize vertical profiles of isotopic composition and CO$_2$. It is noted that Bowling et al. (1999a) interpreted isoflux (in δ units) incorrectly as the net ecosystem exchange of $^{13}\text{CO}_2$ (which they denoted ^{13}NEE), and similarly misinterpreted the eddy and storage isoflux terms. The use of R (eqns 3 and 4) instead of δ notation would avoid the subtle distinction between isoflux and net exchange of $^{13}\text{CO}_2$. However, for consistency with other CO$_2$ mass balance studies we report $^{13}\text{CO}_2$ exchange as an isoflux in this paper.

$$\delta^{13}\text{C}_\text{a} F_\text{R}$$ (term III) represents the net flux of $^{13}\text{CO}_2$ added to the atmosphere by the total respiration flux F_R having isotopic composition $\delta^{13}\text{C}_\text{R}$. We assume that a single isotopic composition can be found that is representative of all components of ecosystem respiration (Keeling 1958). The term $(\delta^{13}\text{C}_\text{a} - \Delta)F_\lambda$ represents the $^{13}\text{CO}_2$ removed by photosynthesis, which is the total photosynthetic uptake F_λ times the isotope ratio of that assimilated carbon. The isotope ratio of photosynthetically produced carbon is given by the source air $(\delta^{13}\text{C}_\text{a})$ modified by the discrimination (\Delta) associated with photosynthesis. Discrimination is defined here as a positive number, e.g. for an atmosphere with composition -8%, and a photosynthetic discrimination of $+18\%$, $F_\lambda (\delta^{13}\text{C}_\text{a} - \Delta) = F_\lambda (-8\% - 18\%)$.

Lloyd et al. (1996) used a mass balance approach to develop similar equations. Their eqn 10 has been particularly helpful in determining the relative importance of photosynthesis, respiration, and turbulent transport of air into the canopy in controlling the isotopic composition of forest CO$_2$ (Lloyd et al. 1996; Flanagan et al. 1997). This is a useful concept which has shown how important both biological and physical (boundary-layer depth, turbulent mixing) effects are in controlling isotopic composition of CO$_2$ in the surface layer. However, Lloyd’s approach requires several assumptions which are not always satisfied in a forest canopy, such as a well-mixed canopy air space, which in a large closed canopy is usually satisfied only in late afternoon (e.g. Buchmann et al. 1996), and the dominance of certain one-way flux terms over the net eddy and storage fluxes. Lloyd et al. (1996) examine these assumptions in detail.

There are also conceptual parameters in Lloyd’s approach which are difficult to directly measure: F_{so}, the mean one-way flux of CO$_2$ into the canopy, which may be complicated by coherent turbulence structure (Raupach et al. 1996) and sampling interval considerations (Lenschow et al. 1994), and in particular δ_{so}, the mean isotopic composition of air moving into the canopy. These parameters are included in the turbulent transport term in Lloyd’s eqn 10, which is calculated as a residual from other measured and modelled data (Lloyd et al. 1997).
Furthermore, the goal of separating of photosynthetic and respiratory fluxes cannot be achieved using Lloyd's equation alone.

Equations (1) and (6) form the basis of the present method to distill F_A and F_R from net flux and net isoflux measurements. The influence of turbulent transport is directly included in measured parameters. If the total integrated canopy photosynthetic discrimination (Δ) is known, two equations can be solved to obtain two unknowns, F_A and F_R, can be derived. Below, the procedure for obtaining each of the terms in these equations is detailed.

Table 1 Symbols used in the text

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>carbon isotope fractionation resulting from diffusion of CO$_2$ in air (4.4‰)</td>
</tr>
<tr>
<td>b</td>
<td>intercept of a linear regression between $\delta^{13}C_a$ and C (%)</td>
</tr>
<tr>
<td>b_R</td>
<td>carbon isotope fractionation resulting from carboxylation by Rubisco (27.5‰)</td>
</tr>
<tr>
<td>C, C_a</td>
<td>CO$_2$ mole fraction in ambient air (µmol mol$^{-1}$)</td>
</tr>
<tr>
<td>C_i</td>
<td>CO$_2$ mole fraction in the intercellular air space, integrated over the canopy (µmol mol$^{-1}$)</td>
</tr>
<tr>
<td>c_i</td>
<td>CO$_2$ mole fraction leaving the canopy (inside – Lloyd et al. 1996; µmol mol$^{-1}$)</td>
</tr>
<tr>
<td>c_o</td>
<td>CO$_2$ mole fraction entering the canopy from above (outside – Lloyd et al. 1996; µmol mol$^{-1}$)</td>
</tr>
<tr>
<td>c</td>
<td>CO$_2$ mole fraction leaving the canopy (inside – Lloyd et al. 1996; µmol mol$^{-1}$)</td>
</tr>
<tr>
<td>c_o</td>
<td>CO$_2$ mole fraction entering the canopy from above (outside – Lloyd et al. 1996; µmol mol$^{-1}$)</td>
</tr>
<tr>
<td>c_p</td>
<td>specific heat of air at constant pressure (J g$^{-1}$ K$^{-1}$)</td>
</tr>
<tr>
<td>D</td>
<td>carbon isotope discrimination of net photosynthesis, integrated over the canopy (%)</td>
</tr>
<tr>
<td>D_E</td>
<td>net ecosystem discrimination (includes photosynthesis and ecosystem respiration – Lloyd et al. 1996; %)</td>
</tr>
<tr>
<td>D_e</td>
<td>net ecosystem discrimination (free troposphere vs. ecosystem respiration – Buchmann et al. 1998; %)</td>
</tr>
<tr>
<td>D_{aF}</td>
<td>an estimate of D, equal to $\delta^{13}C_a - \delta^{13}C_r$ (Lloyd & Farquhar 1994; %)</td>
</tr>
<tr>
<td>F_A</td>
<td>total ecosystem net photosynthetic assimilation flux (µmol CO$_2$ m$^{-2}$ s$^{-1}$, by our sign convention F_A is negative during net uptake)</td>
</tr>
<tr>
<td>F_R</td>
<td>total ecosystem respiration flux (µmol CO$_2$ m$^{-2}$ s$^{-1}$, always positive)</td>
</tr>
<tr>
<td>G</td>
<td>soil heat flux (W m$^{-2}$)</td>
</tr>
<tr>
<td>g_c</td>
<td>stomatal conductance to CO$_2$, integrated over the canopy (mol m$^{-2}$ s$^{-1}$)</td>
</tr>
<tr>
<td>γ</td>
<td>psychrometric constant (kPa K$^{-1}$)</td>
</tr>
<tr>
<td>H</td>
<td>sensible heat flux (W m$^{-2}$)</td>
</tr>
<tr>
<td>L</td>
<td>Obukhov length (m)</td>
</tr>
<tr>
<td>LE</td>
<td>latent heat flux (W m$^{-2}$)</td>
</tr>
<tr>
<td>m</td>
<td>slope of a linear regression between $\delta^{13}C_a$ and C (%) mol µmol$^{-1}$)</td>
</tr>
<tr>
<td>MO</td>
<td>Monin-Obukhov similarity theory</td>
</tr>
<tr>
<td>NEE</td>
<td>net ecosystem exchange of CO$_2$ (µmol CO$_2$ m$^{-2}$ s$^{-1}$, negative during uptake)</td>
</tr>
<tr>
<td>isoflux</td>
<td>net isoflux of 13CO$_2$ (see text for discussion, µmol CO$_2$ m$^{-2}$ s$^{-1}$ %)</td>
</tr>
<tr>
<td>overbar ($\bar{\ }$)</td>
<td>Reynolds average</td>
</tr>
<tr>
<td>PAR</td>
<td>photosynthetically active radiation (µmol m$^{-2}$ s$^{-1}$)</td>
</tr>
<tr>
<td>PM</td>
<td>Penman-Monteith</td>
</tr>
<tr>
<td>prime ($'$)</td>
<td>fluctuations from the Reynolds average</td>
</tr>
<tr>
<td>R</td>
<td>molar ratio of heavy to light isotope (13C/12C, dimensionless)</td>
</tr>
<tr>
<td>R_a</td>
<td>R of ambient CO$_2$ (dimensionless)</td>
</tr>
<tr>
<td>r_a</td>
<td>total aerodynamic resistance (s m$^{-1}$)</td>
</tr>
<tr>
<td>r_m</td>
<td>aerodynamic resistance to momentum deposition (s m$^{-1}$)</td>
</tr>
<tr>
<td>R_n</td>
<td>net radiation flux (W m$^{-2}$)</td>
</tr>
<tr>
<td>R_r</td>
<td>R of total ecosystem respiration flux (dimensionless)</td>
</tr>
<tr>
<td>r_t</td>
<td>aerodynamic resistance to turbulent transport of scalars (s m$^{-1}$)</td>
</tr>
<tr>
<td>ρ</td>
<td>air density (kg m$^{-3}$)</td>
</tr>
<tr>
<td>s</td>
<td>slope of the saturation vapour pressure vs. temperature curve for water (kPa K$^{-1}$)</td>
</tr>
<tr>
<td>t</td>
<td>time (s)</td>
</tr>
<tr>
<td>u^*</td>
<td>friction velocity (m s$^{-1}$)</td>
</tr>
<tr>
<td>VPD</td>
<td>vapour pressure deficit (kPa)</td>
</tr>
<tr>
<td>w</td>
<td>vertical wind velocity (m s$^{-1}$)</td>
</tr>
<tr>
<td>z</td>
<td>height (m)</td>
</tr>
<tr>
<td>z_m</td>
<td>height of measurement (m)</td>
</tr>
</tbody>
</table>

Methods

Site

This study was conducted during July 1999 at the Walker Branch Watershed, a deciduous forest in eastern Tennessee. Dominant species in the forest are oaks (Quercus alba, Q. prinus, maples (Acer rubrum, A. saccharum), tulip poplar (Liriodendron tulipifera), and various hickory (Carya) species. Full site details are available elsewhere (Baldocchi & Harley 1995). Water availability in the forest was relatively high throughout the study, as evidenced by numerous rain showers prior to and during the measurements.

Flux and storage measurements

Fluxes of CO₂, sensible heat, latent heat, and relevant forest meteorological parameters were measured from a 44-m tall instrument tower. This study is part of a long-term CO₂ exchange study, and the instrumentation used has already been described extensively (Baldocchi & Harley 1995; Greco & Baldocchi 1996; Baldocchi 1997). Briefly, CO₂ and H₂O fluxes were measured above the canopy every 30 min via the eddy covariance technique (using a SWS-211/3K sonic anemometer, Applied Technolgies, Boulder, CO, and an open path infrared gas analyser; Auble & Meyers 1992), and vertical profiles of CO₂ mole fraction were used to estimate canopy storage. These fluxes were combined to calculate net ecosystem CO₂ exchange (NEE) as described above. Because nocturnal eddy covariance fluxes are underestimated at low u* (Goulden et al. 1996), an attempt was made to apply a friction velocity (u*) threshold to the present data. However, during the period in which the isotope data are likely to be biologically valid (perhaps 2 weeks before and after isotope measurements), insufficient data were available to confidently fill gaps resulting from removal of low u* periods.

Isosfluxes were estimated by combining fast (10-Hz) CO₂ time-series with a linear relation between δ¹³C and CO₂ mole fraction (Bowling et al. 1999a)

\[
\text{eddy isosflux} = \frac{\rho \omega \delta^{13}C}{\delta^{13}C_{\text{ref}}} = \frac{\rho \omega \delta^{13}C}{\delta^{13}C_{\text{ref}}}
\]

CO₂ time-series were adjusted to constant density using 10-Hz water and temperature data prior to applying (7). The linear relation was used to predict the isotope ratio of CO₂ from measured CO₂ mole fractions at four heights (1.1, 9.4, 21.4, and 37.0 m), and storage isosfluxes were calculated as described above. Net isosflux was computed by adding the eddy isosflux from (7) and the storage isosflux from (5).

Flask measurements

The relationship between isotopic composition and C was established by collecting air in glass flasks. On 16–17 July 1999, 61 100 mL glass flasks (described by Ehleringer & Cook 1998) were filled with air at two sampling heights. The goal was to evaluate the δ¹³C vs. C relationship at a variety of timescales, ranging from those characteristic of eddy covariance measurements (100 ms to 30 min) to those characteristic of standard isotopic flask sampling (tens of minutes). Timing of samples was chosen to represent photosynthetic and respiratory periods for all time scales.

Thirty-one flasks were filled by flushing with air at a flow rate of 280–300 mL min⁻¹, subsampling from air at 26.0 m height through 70 m of 0.64 cm ID Teflon tubing (PFA, Cavalier Components, Inc., Richmond, VA). Air was pulled quickly through the long sampling line; residence time in the Teflon tubing was 9 s, and the air in the flasks represented roughly a 20-s average at the sampling flow rate. The samples were dried using a Mg(ClO₄)₂ trap. These flasks, referred to as the 30-s timescale, were obtained roughly every 2–3 h over a 48-h period.

Eight flasks were filled at 37.0 m height to represent a 30-min time average by flushing air through a large glass volume (11.6 L) at 387 mL min⁻¹, through a Mg(ClO₄)₂ drying trap, then through a flask. These flasks, referred to as the 30-min timescale, were obtained on 16 July at 04.00, 09.00, 15.00, 20.00, and on 17 July at 04.00, 09.00, 14.00, and 20.00 hours (local standard time).

Twenty-two flasks were filled at 37.0 m by first evacuating to a pressure of 10⁻¹ kPa, then immediately filling within 50 cm of the open path IRGA by activating a solenoid valve with a switch. Manometric laboratory tests with this system showed that the flasks filled to 63% (one time constant for an exponential process) of their final pressure within 427 ± 5 ms, and 100% pressure within 921 ± 7 ms (mean ± SE, n = 10). Further testing showed no fractionation when evacuated 100 mL flasks were filled from a 18.9-L glass volume rather than flushing the flasks; the measured difference in δ¹³C of the large volume and the flasks was 0.01 ± 0.11‰ (mean ± SD, n = 10). It was impossible to dry the evacuated flask samples during collection, so appropriate mixing ratio corrections were applied as described below. These flask are referred to as 500-ms timescale.

Carbon isotope ratios of CO₂ in the flasks were measured on a continuous-flow isotope ratio mass spectrometer (Finnigan MAT 252, San Jose, CA) as described by Ehleringer & Cook (1998). Precision for δ¹³C was determined daily by injections of known standards (n = 4 or 5 each day) and was typically ± 0.06‰ (n = 25 overall). Appropriate corrections for
the presence of 17O were applied, and CO$_2$ was separated from N$_2$O before analysis via gas chromatography. Mole fraction of CO$_2$ was determined by integrating the m/z 44 peak and comparing to injections from known standards, with a precision of \pm 5.5μmol mol$^{-1}$. This relatively large error for C results from variation in the 300μL injection volume of a sample into the mass spectrometer. Corrections were made for water vapour in the 500 ms flasks using 10-Hz water vapour density data corrected to mean water vapour density at 36.0 m (HMP 35D humitter, Vaisala, Woburn, MA), and matched exactly in time to the task sampling times. Differences in C between tasks resulting from errors in absolute water vapour density are at least an order of magnitude smaller than the precision of the C measurement.

Partitioning approach

Equations (1) and (6) are used to partition NEE into its components. In these equations respiration (F_R) and photosynthetic assimilation (F_A) fluxes are assumed to be unknowns, and the exchange terms (NEE and isotrans) are obtained as described above. $\delta^{13}C_r$ the isotope ratio of respired CO$_2$ was obtained using the Keeling-plot approach ($\delta^{13}C_e$ equals the intercept of a plot of $\delta^{13}C_a$ vs. the inverse of C on samples collected at night; Keeling 1958). The isotope ratio of atmospheric CO$_2$ ($\delta^{13}C_a$) was either directly measured or calculated from C measured at 22.0 m and the flask regression.

Δ is calculated using an equation developed at the leaf scale (Farquhar et al. 1982)

$$\Delta = a + (b_R - a) \frac{C_l}{C_o} \quad (8)$$

where a is the fractionation resulting from diffusion of CO$_2$ in air (4.4%o) into the leaf, b_R is the net fractionation of the enzyme-catalysed fixation (roughly 27.5%o) of CO$_2$, and C_l and C_o are the CO$_2$ mole fractions in the intercellular air space and ambient air, respectively. Note that in this equation C_l is integrated over the whole canopy, and the measured C at 22.0 m (near canopy top) is used for C_o. Although Lloyd et al. (1996) provide a useful formulation for integrating Δ over many canopy layers to provide a flux-weighted average discrimination, canopy-scale measurements in a big-leaf analogue model are used in preference here to estimate Δ via C_l obtained from the gas exchange relation

$$-F_A = g_e(C_o - C_l) \quad (9)$$

where g_e is the integrated canopy stomatal conductance to CO$_2$. (The negative sign on F_A is required by the sign convention used.) The four equations (1), (6), (8) and (9) contain five unknowns (F_A, F_R, Δ, C_o, and g_e). Provided that g_e is known, these equations can be combined to provide a quadratic equation which provides only one realistic solution for F_A (derived in the Appendix). F_R can then be found using (1).

g_e was calculated from measured parameters by inverting the Penman–Monteith (PM) equation (e.g. Grace et al. 1995)

$$\frac{1.6}{g_e} = \frac{\sigma_a (R_n - LE - G - H) + \rho C_p VPD}{\gamma LE} - r_a \quad (10)$$

where s is the slope of the saturation vapour pressure vs. temperature curve for water, R_n is net radiation, LE, G, and H are latent, soil, and sensible heat fluxes, ρ is air density, C_p is the specific heat of air, VPD is saturation vapour pressure deficit, γ is the psychrometric constant, and the 1.6 factor arises in the conversion from conductance of H$_2$O to CO$_2$. The aerodynamic resistance term r_a was computed as the sum of a resistance to momentum ($r_{ mover}$, which is a function of atmospheric stability) and an extra term (r_t) for turbulent transport of scalars using the approach of Magnani et al. (1998).

Δ was also estimated using a second approach. Evans et al. (1986) derived equations to calculate discrimination by a leaf enclosed in a cuvette based on the mole fraction and isotopic composition of CO$_2$ in the inlet and outlet air streams. Lloyd et al. (1996) suggested that this concept could be extended to the ‘on-line’ discrimination of an entire canopy

$$\Delta_E = -c_{o} (\delta_{o} - \delta_{l}) \quad \frac{(c_{o} - c_{l})}{(c_{o} - c_{l})} \quad (L15)$$

where c_{o} and c_{l} (δ_{o} and δ_{l}) represent the CO$_2$ mole fractions (isotope ratios) in air outside and inside the canopy air space, respectively. (Lowercase c_{o} and c_{l} are used here to distinguish from C_l developed earlier.) Combining Lloyd’s equation with the Evans approach to calculate photosynthetic discrimination from Δ_E gives

$$\Delta = \frac{1000 \left(\frac{c_{o}}{c_{o} - c_{l}} \right) (\delta_{l} - \delta_{o})}{1000 + \delta_{l} - \left(\frac{c_{o}}{c_{o} - c_{l}} \right) (\delta_{l} - \delta_{o})} \quad \text{(EA15)}$$

Notation in (EA15) is consistent with Lloyd et al. (1996) and differs from Evans et al. (1986). Herein c_{o} and c_{l} are estimated by averaging the 10-Hz CO$_2$ time series when $w < 0$ (c_{o}) and $w > 0$ (c_{l}), and derive δ_{o} and δ_{l} from c_{o} and c_{l} and the flask regression (Table 2), and refer to this as ‘on-line’ discrimination by analogy with leaf measurements. Note that estimation of δ_{o} and δ_{l} depends on the
The linear relation holds at all time scales important to turbulent transport of mass (roughly 100 ms to 30 min). Bowling et al. (1999a) used the hyperbolic relaxed eddy accumulation (HREA) technique to collect updraft and downdraft air for isotopic analysis, and showed that while the $\delta^{13}C$-vs.-C relation is linear for both flask (whole-air) and HREA (updraft or downdraft samples), the slopes and intercepts for each type of sample were not the same. This raises the question of whether the application of (7) to 10-Hz flux data is appropriate.

The relationship between carbon isotopic composition and CO$_2$ mole fraction at Walker Branch in July 1999 is shown in Fig. 1(a). Samples were collected on timescales that varied by more than three orders of magnitude, and the relation does not show the significant change in slope apparent in the HREA samples of Bowling et al. (1999a). Regressions for these samples are shown in Table 2. This constitutes strong evidence that the $\delta^{13}C$-vs.-C linearity holds at short timescales, and thus application of (7) for 13CO$_2$ appears legitimate. The variation in slope between analyses conducted by HREA vs. flask sampling that was observed in our previous study (Bowling et al. 1999a) must be a consequence of factors other than timescale incompatibility.

The $\delta^{13}C$-vs.-C regressions for the daytime and nighttime samples differ significantly. This is important because the nocturnal mixing line represents the influence of respiration alone, while the daytime relation shows the combined effects of photosynthetic discrimination and respiration. This was noted by Bowling et al. (1999a) and is apparent in Figs. 7 and 8 of Flanagan et al. (1996), which included only nocturnal data. However, because the isotope ratio of forest CO$_2$ is strongly influenced by atmospheric stability, the daytime (nighttime) influence may persist into the early evening (morning). Flanagan’s plots do include measured C in the range of 360–390 μmol mol$^{-1}$, which likely include the photosynthetic influence.

$\delta^{13}C$ is plotted vs. $1/C$ in Fig. 1(b), and separated into day and night periods, based on an arbitrary day/night division of -11% (see also Fig. 3c). The intercept of a regression of the nocturnal data is commonly interpreted as the isotope ratio of respired CO$_2$ integrated over the whole ecosystem (Keeling 1958). A fundamental limitation of the Keeling-plot approach is evident in the figure; the intercept is extrapolated far beyond the region that includes measurements, and small errors in determination of the slope lead to amplified errors in the intercept (Buchmann et al. 1988). Dashed lines represent the 95% confidence intervals on the nocturnal regression slope, and lead to a range in estimated $\delta^{13}C_r$ of -22.7 to -27.0%. In the present partitioning exercise the regression intercept of -24.9% is used.

Table 2

<table>
<thead>
<tr>
<th>Flask type</th>
<th>m</th>
<th>b</th>
<th>r^2</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>All flasks</td>
<td>-0.033 ± 0.002</td>
<td>2.92 ± 0.80</td>
<td>0.956</td>
<td>61</td>
</tr>
<tr>
<td>Night</td>
<td>-0.026 ± 0.003</td>
<td>-0.32 ± 1.35</td>
<td>0.948</td>
<td>15</td>
</tr>
<tr>
<td>Day1</td>
<td>-0.039 ± 0.005</td>
<td>5.23 ± 1.91</td>
<td>0.849</td>
<td>46</td>
</tr>
<tr>
<td>30 min</td>
<td>-0.036 ± 0.003</td>
<td>4.06 ± 1.16</td>
<td>0.991</td>
<td>8</td>
</tr>
<tr>
<td>30 s</td>
<td>-0.033 ± 0.003</td>
<td>2.85 ± 1.22</td>
<td>0.959</td>
<td>31</td>
</tr>
<tr>
<td>500 ms</td>
<td>-0.033 ± 0.004</td>
<td>3.02 ± 1.57</td>
<td>0.943</td>
<td>22</td>
</tr>
</tbody>
</table>

1This regression was used to compute 13CO$_2$ fluxes (eqn 7).

2The intercept of this regression was used as $\delta^{13}C_r$.

Results and discussion

Relationship between $\delta^{13}C$ and C

It is firmly established in the literature that $\delta^{13}C$ and the inverse of C tend to be linearly related (Keeling 1958; numerous studies since). However, plots of $\delta^{13}C$-vs.-C are also linear at the ecosystem and regional scales (Friedli et al. 1987; Flanagan et al. 1996; Nakazawa et al. 1997a,b; Bowling et al. 1999a). Bowling et al. (1999a) exploited this relationship to estimate 13CO$_2$ fluxes. A critical and untested assumption of their approach is that
Environmental parameters, NEE, and $\delta^{13}C_a$

Nineteen-day ensemble averages of environmental parameters are shown in Fig. 2. PAR peaked on average about 1,150 μmol m$^{-2}$ s$^{-1}$, and mean air temperature during the study ranged from 22 to 30°C. High evaporative demand was apparent most afternoons as mean VPD approached 1.5 kPa. Averages of NEE, isoflux, and $\delta^{13}C_a$ are shown in Fig. 3. These are the relevant measured parameters in the partitioning equations (1) and (6). There was significant day-to-day variability in the fluxes, but consistent diurnal patterns were observed. Similar variability has been observed in most eddy covariance studies (e.g. Moncrieff et al. 1996; Yang et al. 1999) but error bars are often reported as standard error rather than standard deviation. NEE peaked on average at about -23 μmol m$^{-2}$ s$^{-1}$, typical for this forest when water is not limiting (Baldocchi 1997). The release of stored respiratory CO$_2$ in the morning hours was apparent as strong negative storage flux (Fig. 3a). Patterns for isoflux are similar (Fig. 3b), with a mid-day peak of 620 μmol m$^{-2}$ s$^{-1}$. The isoflux is not simply a linear function of NEE as might be expected from (7) (discussed below). The strong opposing influences of respiration and photosynthesis on forest air are apparent (Fig. 3c). CO$_2$ was consistently depleted in the
heavier 13C isotope (more negative δ^{13}C) in the early morning and enriched in late afternoon.

Canopy conductance

In order to use the isotope data to estimate F_A and F_R fluxes, knowledge of canopy-integrated photosynthetic discrimination is required, which, in turn, is dependent on mean canopy conductance. Canopy conductance was calculated for the study period (Fig. 4) and is similar in magnitude to conductances derived for other temperate deciduous forests (Kelliher et al. 1995). The diurnal pattern in g_c generally follows available energy (plotted as net radiation in Fig. 4). However, there is considerable variation in the conductance estimate derived from the PM equation, which does not appear to be driven by changes in available energy. Day-to-day variability in conductance was high (not shown, but see error bars in Fig. 5d) leading to large scatter in the mean values of Fig. 4. This scatter represents natural variability in LE and VPD and should not be interpreted as a consistent trend in g_c. Such variability is problematic for an accurate determination of Δ, and the causes of the variation deserve further scrutiny.

Various mean atmospheric parameters are shown in Fig. 5. Aerodynamic resistance to both momentum (r_m) and scalar (r_t) transport was significant at night and in the early morning hours, and controlled the timing of the rise of the PM-derived canopy conductance (Fig. 4). Note that these terms are not completely zero even during well-mixed afternoon conditions. When $r_a (= r_m + r_t)$ is forced to equal the minimum observed mid-day value (23.1 s m$^{-1}$, Fig. 5a) at all times of the day, the PM-derived g_c rises earlier and peaks substantially higher (Fig. 4). The ‘correct’ conductance is likely to be intermediate in magnitude between these estimates. Inversion of the PM equation to estimate conductance assumes accurate energy balance closure, but in the present dataset the sum of latent and sensible heat, soil heat flux, and canopy/soil heat storage accounted for only 82% of incoming energy (this is typical at Walker Branch; Wilson & Baldocchi 2000). Further, the logarithmic wind profile on which r_m is based is complicated by canopy roughness, and transfer resistance (r_t) is modelled using Monin–Obukhov (MO) similarity theory (Magnani et al. 1998), which may not hold at all times of the day (discussed below). As will be shown, these uncertainties in the determination of g_c, and their effect on Δ, directly
affect the F_A and F_R fluxes derived from NEE and isoflux. Correct evaluation of g_c is therefore necessary for accurate NEE partitioning.

Surface heating and associated turbulence began (shown by increased friction velocity in Fig. 5b) at sunrise, and continued monotonically until about 10.30 hours. This was followed by a 2.5-h period where u^* no longer increased. The Obukhov length (L) is a commonly used scaling variable in the atmospheric surface layer, and is an indicator of the relative importance of buoyant vs. mechanical production of turbulence. During this time period, L became small and negative, with substantially lower day-to-day variability than during other periods (Fig. 5c). This indicates strong buoyant turbulence, and vertical mixing associated with free convection (which usually involves the failure of MO similarity theory and hence our formulation for r_t is questionable during this period). Latent heat flux and vapour pressure deficit (VPD) at this time continued to increase, but at different rates (data not shown). Increases in latent heat flux may result from upward-moving moist air or downward-moving drier air (or both), and are not necessarily an indicator of continually increasing transpiration by the vegetation. This phenomenon is apparent as a sharp decrease in the mean ratio LE/VPD in Fig.5(d) near 11.00 hours, and translates to a strong dip in the PM-derived conductance (Fig. 4, eqn 10). Whether or not this change is a realistic indicator of a physiological change in stomatal conductance (and thus Δ) is a critical and difficult question. Stomata clearly respond to changes in atmospheric moisture, but this occurs in the leaf boundary layer and may be fully decoupled from the atmosphere (Jarvis & McNaughton 1986). Because the sawtooth patterns of the PM-derived conductances in Fig. 4 likely do not reflect true leaf-level physiological changes, it is assumed that their general magnitude and diurnal shape are correct, and mathematically smoothed conductances derived from each (as well as the originals) are used in our partitioning exercise. These smoothed conductances are shown in Fig. 6. Also shown in Fig. 6 is a conductance estimate derived from the ‘on-line’ discrimination approach (Δ was prescribed by eqn EA 15, and g_c was then calculated by first solving (1) and (6) for F_A, then using (8) and (9)]. This conductance is similar in rise time and pattern to the PM conductance (but without the dip during boundary-layer growth), and declines more rapidly in the afternoon. The ‘on-line’ conductance

Fig. 5 (a) Mean aerodynamic resistance to momentum (r_m, circles) and scalar (r_t, triangles) transport, (b) mean friction velocity (u^*), (c) mean Obukhov length (L), and (d) mean ratio of latent heat flux to vapour pressure deficit (LE/VPD).
estimate is based on changes in C (and δ13C) rather than changes in water vapour flux. The difference in the PM and on-line g_c may indicate temporal changes in water use efficiency (F_A/LE) at the canopy scale. Alternatively, the difference may indicate that water vapour concentrations and fluxes are more affected by mixing of air from above the forming boundary layer than are CO2 concentrations and isotope ratios.

Isotope partitioning

The partitioning results are summarized in Fig. 7. Measured NEE is shown in each panel for comparison. Regressions of nocturnal NEE vs. soil or air temperature (derived during windy periods) are often used in eddy covariance studies to estimate total ecosystem respiration flux, and net assimilation is calculated as a residual [\(F_A = NEE - F_R(T) \), Goulden et al. 1996]. The present isotope-derived estimates of \(F_R \) and \(F_A \) are compared to those based on the regression reported for Walker Branch by Greco & Baldocchi (1996) as an independent estimate of respiration flux (Fig. 7). It should be stressed that the temperature-based regressions are noisy and considerable variation is apparent in measured NEE at night that cannot be explained by temperature variation (Goulden et al. 1996). Thus these temperature-based fluxes are not necessarily the ‘correct’ respiration fluxes, but are a useful measure for comparison.

Shown in Fig. 7(a) are the fluxes obtained by using the PM-derived conductance in Fig. 4. Considerable scatter is propagated to the fluxes from the \(g_c \) scatter, and respiration fluxes are erroneously negative at midmorning. As discussed, the dip in \(g_c \) during this period (10.30–12.00 hours) likely does not reflect actual physiological changes in conductance of the forest. Photosynthesis is underestimated during this period and hence respiration becomes negative to compensate (eqn 1). When the scatter in canopy conductance is removed by smoothing, resulting \(F_A \) and \(F_R \) fluxes appear more realistic (Fig. 7b). Photosynthetic flux peaks at solar noon as would be expected from leaf-level light response curves (note that NEE in the present data does not peak at solar noon), but the respiration flux remains negative during the morning transition.

As mentioned, the formulation of aerodynamic resistance strongly controls the dynamics of the rise in \(g_c \) (Fig. 4). If the present estimates for \(r_a \) were smaller, \(g_c \) would rise earlier in the day and \(F_A \) would be proportionally larger (eqn 10). Using the mid-day minimum value for \(r_a \) (Fig. 4) at all times of the day indeed increases the magnitude of the fluxes but results remain noisy (Fig. 7c). Smoothing \(g_c \) results in much smoother \(F_R \) and \(F_A \) fluxes (Fig. 7d) as expected. Nocturnal NEE and \(F_R \) in Fig. 7(d) are very similar, and the daytime \(F_R \) is higher than would be predicted from regression based on temperature. Photosynthetic flux peaks prior to solar noon.

The ‘on-line’ estimate of \(g_c \) is based on CO2 instead of H2O measurements. Partitioning results using this \(g_c \) are shown in Fig. 7(e). Respiration fluxes appear to be underestimated during most of the day, implying the relatively small conductance forces \(F_A \) to be too small.
The dynamics of the rise in conductance are similar in the ‘on-line’ and standard PM cases (Fig. 6), and the ‘on-line’ estimate is lower in the afternoon.

The actual canopy conductance is likely to be intermediate between the standard PM case and the case involving minimum aerodynamic resistance, and hence the correct assimilation and respiration fluxes are likely intermediate between Fig. 7(b),(d).

By treating the canopy as a single layer to determine canopy conductance and D, well-established complexity in vegetation canopies is explicitly ignored. Many studies have shown that vertical gradients exist in those factors controlling leaf stomatal conductance: light availability, C_a (and $\delta^{13}C_a$), leaf temperature, saturation deficit, and photosynthetic capacity, C_i/C_a (and thus Δ) of individual leaves (Garten & Taylor 1992; Ellsworth & Reich 1993; Roden & Pearcy 1993; Brooks et al. 1997; see also References in Jarvis & McNaughton 1986). The degree to which these variations in physiology integrate to the canopy level is not well understood. Further, use of the PM equation to determine a bulk canopy conductance to CO$_2$ and its isotopes is complicated by the different roles of the soil in evaporative and CO$_2$ fluxes (Raupach & Finnigan 1988). Soil evaporation at Walker Branch in the

Fig. 7 Photosynthesis (F_A, circles) and respiration (F_R, squares) fluxes calculated from measured NEE (solid lines), isoflux, $\delta^{13}C_a$ and $\delta^{13}C_m$ using (1) and (6). Each panel is associated with a canopy conductance in Figs 4 or 6, and a relevant discrimination (Δ) in Fig. 9, through (8) and (9). Dotted lines represent respiration flux estimated from an exponential relationship between nocturnal NEE and air temperature (Greco & Baldocchi 1996), and the dashed-dotted lines are the derived photosynthetic fluxes calculated as $F_A = NEE - F_R(T)$. Solar noon during this period was approximately 14.10 hours.
summer is a minimal component of evapotranspiration unless the litter is wet (Wilson et al. 2000), but soil CO₂ fluxes are generally a major component of total CO₂ flux regardless of litter moisture. Thus gc may or may not be a realistic indicator of leaf-level properties.

Errors associated with the single-layer approach used herein are difficult to assess at this point. Advances have been made with other approaches to estimating whole canopy conductance (Granier et al. 2000) and these might provide better estimates of Δ. However, current global-scale carbon balance models incorporate photosynthetic discrimination (Ciais et al. 1995; Fung et al. 1997; Greco & Baldocchi 1996; but see Hollinger et al. 1994; Malhi et al. 1998). Light response curves for NEE at Walker Branch tend to be more linear than most sites (Baldocchi 1997), and the isotope-derived photosynthetic fluxes are in agreement (Fig. 8a). Light levels at Walker Branch, however, can be much higher (1700μmol m⁻² s⁻¹) than observed herein (Baldocchi 1997), and the curves used herein do suggest a trend towards saturation at the highest light intensities.

When evaluated against air temperature, the isotope-derived respiration fluxes are quite variable (Fig. 8b), and do not closely follow the regression of Greco & Baldocchi (1996). The bi-modal distribution of the largest F R fluxes (smooth PM, min rₐ, circles) results from the pattern of respiration shown in Fig. 8(d), with morning (09.00 hours) and late afternoon (16.00) peaks. rₐ is of greater importance at 09.00 than at 16.00 (Fig. 5a), and a value for rₐ between that shown in Fig. 5(a) and the minimum value would result in F R fluxes at 09.00 that are intermediate between those shown in Fig. 7(b),(d). Note that F R fluxes around 09.00 are likely underestimated in Fig. 7(b) and overestimated in Fig. 7(d). Thus the formulation of rₐ strongly influences the fluxes calculated by the present isotope approach.

Photosynthetic discrimination

In reality it is a measure of Δ (and not gc) that needs to be used in (1) and (6) to partition NEE into F R and F A. If this parameter could be measured or modelled with confidence, then assessment of gc would be unnecessary. Leaf-level discrimination (integrated over the lifetime of a leaf) has long been estimated by comparing the isotope

Fig. 8 (a) Light-response curves for whole-canopy photosynthesis (FA) using the two smoothed estimates of canopy conductance and the temperature-based relation shown in Fig. 7. (b) Temperature-response curves for ecosystem respiration (FR) for each case.
ratios of air and of leaf biomass (Farquhar et al. 1989). However, instantaneous discrimination values can differ substantially from the integrated estimate (Brooks et al. 1997), and there is considerable variation in carbon isotope ratio of leaf biomass in this deciduous forest (Garten & Taylor 1992).

\(\Delta \) in (6) represents the canopy-integrated photosynthetic discrimination against \(^{13}\text{CO}_2\), and is analogous to discrimination by a leaf. This is the same discrimination described by Lloyd & Farquhar (1994) and Fung et al. (1997), applied in the present case on a smaller scale. \(\Delta \) has been approximated as \(\Delta_{LF} = \delta^{13}\text{C}_a - \delta^{13}\text{C}_r \) by Lloyd & Farquhar (1994), Flanagan et al. (1996), and Bakwin et al. (1998). The mathematical difference is stressed between \(\Delta \) and other ecosystem discrimination values in the literature (\(\Delta_e \) of Buchmann et al. 1998), which describe the difference in isotopic composition of ecosystem respiration and the free troposphere, and \(\Delta_E \) of Lloyd et al. (1996), which represents the combined influences of photosynthetic and (both) autotrophic and heterotrophic respiratory fluxes on canopy (air). The formulations of large-scale inversion models (Ciais et al. 1995; Francy et al. 1995; Bousquet et al. 1999) use \(\Delta_e \) not \(\Delta_e \) or \(\Delta_E \). There are currently no direct measurements of \(\Delta \) at the canopy scale.

Discriminations associated with each conductance are shown in Fig. 9. Notable are the strong diurnal patterns, with higher discrimination in the early morning and lower discrimination in the afternoon. Patterns are similar for \(\Delta \) derived from both water vapour (PM) and carbon dioxide (‘on-line’) measurements. These diurnal changes in discrimination are required to produce realistic diurnal patterns in \(F_A \) and \(F_E \). Discrimination values at night were scattered and omitted from Fig. 9 (because there is no photosynthetic flux at night these values are irrelevant anyway). In the partitioning used herein night-time discrimination values are included to avoid artificially equating NEE and \(F_E \) and the solutions of (1), (6), (8) and (9) generally force \(F_A \) to zero at night (Fig. 7).

These discrimination estimates are lower than expected. C3 plants generally have \(C_i/C_a \) near 0.6–0.9, corresponding to a photosynthetic discrimination of 18–24% (Farquhar et al. 1989). At present there are few experimental data with which to compare these results. The authors know of only one study in which photosynthetic discrimination was directly measured under ambient conditions in the field (at the leaf level, Harwood et al. 1998). Their results showed a general trend of higher discrimination in the morning and lower in the afternoon, with considerably larger overall diurnal change (from –30 to –15% over the day). Lloyd et al. (1996) used a model to estimate ecosystem \(F_E \), then used an approach similar to the present one to derive \(\Delta \). Their results were quite similar in magnitude and diurnal pattern for a tropical forest (20 to –18%) but fairly noisy (–20 to –16%) for a coniferous forest in Siberia. Trends in \(C_i/C_a \) for the present study (higher in the morning, lower in the afternoon) are consistent with those obtained in leaf-level studies of mid-day stomatal closure (e.g. Tenhunen et al. 1984; Köppers & Schulze 1985).

The isotope ratio of respired \(^{13}\text{CO}_2 \) (\(\delta^{13}\text{C}_r \)) represents a production-weighted average of all organic carbon being metabolized in the ecosystem, and the heterotrophic component should integrate carbon fixed over a period of days to decades. The \(\Delta_{LF} \) defined by Lloyd & Farquhar (1994) is thus a multiyear integrator of \(\Delta \). However, the autotrophic contribution to the isotope ratio of ecosystem respiration should respond to changes in moisture availability (as discrimination changes) and is likely to influence \(\Delta_{LF} \) on a seasonal or interannual timescale.

Table 3 Average whole-canopy integrated photosynthetic discrimination (\(\Delta \)), weighted by photosynthetic assimilation flux (\(\Delta = \Sigma (\Delta x F_A)/\Sigma (F_A) \)) and by NEE (\(\Delta = \Sigma (\Delta x NEE)/\Sigma (NEE) \)). The NEE-weighted \(\delta^{13}\text{C}_a \) value of –8.00 was used to compute \(\Delta_{LF} \), and the error estimate includes error in \(\delta^{13}\text{C}_a \) and \(\delta^{13}\text{C}_r \) from Table 2.

<table>
<thead>
<tr>
<th>Conductance type</th>
<th>Weighted by (F_A (%))</th>
<th>Weighted by NEE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>16.9 ± 3.8</td>
<td>16.9 ± 2.8</td>
</tr>
<tr>
<td>Smoothed PM</td>
<td>16.8 ± 4.7</td>
<td>16.9 ± 2.6</td>
</tr>
<tr>
<td>PM (min. (r_s))</td>
<td>17.1 ± 3.4</td>
<td>17.1 ± 2.8</td>
</tr>
<tr>
<td>Smoothed PM (min. (r_s))</td>
<td>17.1 ± 3.5</td>
<td>17.1 ± 2.8</td>
</tr>
<tr>
<td>‘on-line’</td>
<td>16.8 ± 3.6</td>
<td>16.8 ± 2.7</td>
</tr>
<tr>
<td>(\Delta_{LF})</td>
<td>(\delta^{13}\text{C}_a - \delta^{13}\text{C}_r)</td>
<td>– 18.1 ± 3.0</td>
</tr>
</tbody>
</table>

Fig. 9 Canopy-integrated photosynthetic discrimination (\(\Delta \)) against \(^{13}\text{CO}_2\) during daylight hours, and the canopy-integrated ratio of intercellular to ambient \(^{13}\text{CO}_2\) mole fraction \((C_i/C_a) \) calculated using (8).

Table 3 Average whole-canopy integrated photosynthetic discrimination (\(\Delta \)), weighted by photosynthetic assimilation flux (\(\Delta = \Sigma (\Delta x F_A)/\Sigma (F_A) \)) and by NEE (\(\Delta = \Sigma (\Delta x NEE)/\Sigma (NEE) \)). The NEE-weighted \(\delta^{13}\text{C}_a \) value of –8.00 was used to compute \(\Delta_{LF} \), and the error estimate includes error in \(\delta^{13}\text{C}_a \) and \(\delta^{13}\text{C}_r \) from Table 2.

<table>
<thead>
<tr>
<th>Conductance type</th>
<th>Weighted by (F_A (%))</th>
<th>Weighted by NEE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM</td>
<td>16.9 ± 3.8</td>
<td>16.9 ± 2.8</td>
</tr>
<tr>
<td>Smoothed PM</td>
<td>16.8 ± 4.7</td>
<td>16.9 ± 2.6</td>
</tr>
<tr>
<td>PM (min. (r_s))</td>
<td>17.1 ± 3.4</td>
<td>17.1 ± 2.8</td>
</tr>
<tr>
<td>Smoothed PM (min. (r_s))</td>
<td>17.1 ± 3.5</td>
<td>17.1 ± 2.8</td>
</tr>
<tr>
<td>‘on-line’</td>
<td>16.8 ± 3.6</td>
<td>16.8 ± 2.7</td>
</tr>
<tr>
<td>(\Delta_{LF})</td>
<td>(\delta^{13}\text{C}_a - \delta^{13}\text{C}_r)</td>
<td>– 18.1 ± 3.0</td>
</tr>
</tbody>
</table>
present estimates (Fig. 9) are based on half-hourly measurements, and are more indicative of short-term photosynthetic activity. Isotopic influences on the atmosphere are most significant during periods of strong flux. Thus the relevant discriminations are those when F_A is maximal in Fig. 7 (12.00–15.00 hours). Flux-weighted average discriminations for each case are shown in Table 3, and are similar for all cases, including Δ_{13}. The flux-weighted discriminations obtained by the present measurements (16.8–17.1%, or 18.1% for the long-term value) are at the low end of the typical C3 range, corresponding to C_3/C_4 near 0.54–0.59 (Table 3 and Fig. 9). Error bars in Table 3 result from propagating the error of NEE, g_C, F_A, etc. The large variability in these parameters translates to large variability in flux-weighted discrimination (using standard errors instead of standard deviations would decrease the error estimates in Table 3 by a factor of roughly $\sqrt{19}$).

Bakwin et al. (1998) used data from the NOAA global sampling network to estimate discrimination at regional scales. After fossil fuel contributions were removed, with $\delta^{13}C_0 = -7.9\%$ and $\delta^{13}C_0 = -24.4\%$ (tall towers in Wisconsin and North Carolina with large regions of C3 deciduous forest) or -24.7% (their mean value at north temperate latitudes), they obtained estimates for Δ_{13} of 16.5–16.8%, which are in direct agreement with the present results. Because the tall tower measurements sample large regional air masses, it is likely that Bakwin’s results include some influence of C4 crop photosynthesis, which is abundant in the midwestern USA, and should lower the average regional discrimination relative to the Walker Branch results presented here.

Lloyd & Farquhar (1994) and Fung et al. (1997) modelled global discrimination at large scales with fairly different results for C3 vegetation averaged around latitudinal bands (17.8% and 20%, respectively). The former study explicitly included mesophyll resistance in their model while the latter did not, and this difference was thought to explain the contrast in their results (Fung, et al. 1997). However, the present contribution also ignores mesophyll resistance and the results are more consistent with those of Lloyd & Farquhar (1994). It should be stressed that direct comparison between the present localized measurements and these studies is difficult because of the large differences in spatial scale.

Isotopic equilibrium and the dependence of isoflux on NEE

The simultaneous solution of (1) and (6) requires their independence. At isotopic equilibrium, the isotopic effects of photosynthesis and respiration in an ecosystem would be equal and opposite. Removal of one mole of CO$_2$ by photosynthesis would enrich canopy air in 13CO$_2$ to the same degree that addition of one mole of respiratory CO$_2$ would decrease it. Formally, isotopic equilibrium can be defined by $\delta^{13}C_r = \delta^{13}C_0 - \Delta$, over an appropriate time interval. If this equality holds, then (6) is linearly dependent on (1) and $\text{isoflux} = \delta^{13}C_r$ (NEE). Further, the ratio of the fluxes (isoflux/NEE) at equilibrium would be simply the Keeling intercept, $\delta^{13}C_r$. How does this ratio compare in the present case? To answer this question an expression for the ratio isoflux/NEE in terms of mean quantities needs to be derived.

Formally, the total vertical flux of 13CO$_2$ is described by

$$^{13}\text{CO}_2 \text{ flux} = \rho \overline{w^{13}\text{CO}_2}$$

(11)

which can be estimated (as an isoflux) using the standard isotopic approximation

$$\approx \rho \overline{w(\delta^{13}C)}.$$

(12)

Expanding each term using Reynolds averaging, and using δ instead of $\delta^{13}C$, for clarity,

$$= \overline{\rho w C} = \rho(w + \overline{w})(\delta + \delta')(C + \overline{C}).$$

(13)

Multiplying the terms, recognizing that the mean of a primed quantity is zero, and assuming \overline{w} gives

$$= \rho \overline{w} \overline{C} \delta + \rho \overline{w} \overline{C} \delta' + \rho \overline{w} \delta \overline{C}' + \rho \overline{w} \delta' \overline{C}'.$$

(14)

The assumption is made that $\overline{\delta} = mC + b$, and thus $\overline{\delta} = m\overline{C} + b$ and $\overline{\delta'} = m'C$. Substituting these terms into the flux equation gives

$$\text{eddy isoflux} = (2m\overline{C} + b)\rho \overline{w} \overline{C}' + m' \rho \overline{w} \overline{C}'.$$

(15)

Thus the eddy isoflux of 13CO$_2$ is a function of the total eddy flux of CO$_2$, the mean CO$_2$ mole fraction during the measurement period \overline{C}, and a triple moment term. The first term on the right-hand side of the equation is typically two orders of magnitude larger than the triple moment term (data not shown), so the eddy isoflux can be well-approximated by the mean quantities

$$\text{eddy isoflux} \approx (2m\overline{C} + b)\rho \overline{w} \overline{C}'$$

(16)

The ratio of eddy isoflux/total CO$_2$ flux in this case is proportional to $2m\overline{C} + b$. This ratio is not constant but varies over a diurnal cycle with the mean ambient CO$_2$ mole fraction \overline{C}, which implies that the isotopic composition of net CO$_2$ flux is not constant over a diel period. A plot of isoflux/NEE (which adds the further complication of storage fluxes) from Fig. 3(a),(b) follows this.

relationship very closely (not shown), varying about a mean near the Keeling plot intercept.

Ideally, isotopic fluxes can be measured directly with the eddy covariance technique, but at present this is impossible for isotopes of CO₂. Thus, indirect approaches need to be used to estimate the isoflux (such as eqn 7). As noted above, the linear relation and the use of (7) appears robust. However, the distinction between this relation and the Keeling (1958) equation

\[\delta^{13}C_a = \text{slope} / \delta^{13}C_r \]
(17)

is subtle but potentially very important. It is unclear which equation is a better predictor of \(\delta^{13}C \) based on C within the typical range of atmospheric CO₂ (see regressions in Table 2 and Bowling et al. 1999a).

Instead, in a fashion similar to (7), the Keeling equation could be used to estimate \(\delta^{13}C_a \) and then calculate \(^{13}CO_2 \) eddy isoflux. Keeling’s approach was intended originally to be used only at night, and assumes mixing of background CO₂ at sunset with respired CO₂ having a single isotopic composition throughout the night. Using (17) to predict \(\delta^{13}C_a \) during the daytime assumes that all isotopic variation comes from a single source, and forces isotopic equilibrium. In fact, substituting (17) into (14) in the derivation above yields the predicted eddy isoflux/total CO₂ flux = \(\delta^{13}C_r \). In the absence of direct measurements of \(^{13}CO_2 \) flux, the partitioning approach outlined in this study is dependent on the assumptions made about the relationship between isotopic composition and CO₂ mole fraction. If, in fact, (17) is correct, then (6) is a multiple of (1). In this case perfect isotopic equilibrium exists, there is no unique information in \(^{13}C \), and \(^{13}C/^{12}C \) measurements cannot be used to partition net ecosystem exchange.

However, most terrestrial ecosystems are unlikely to be in isotopic equilibrium with the present atmosphere. The long-term disequilibrium between soil organic matter and atmospheric CO₂ is now well established (Schimel et al. 1994; Bird et al. 1996; Trumbore 2000). The Keeling relationship appears strong for \(^{13}C \) at night, and it is perhaps more appropriate to use it instead of \(\delta^{13}C \)-vs.-C during nocturnal periods (as here) to calculate \(^{13}CO_2 \) eddy isoflux. During the day, the isotopic effects of photosynthesis may be different than those of respiration. Although Flanagan et al. (1996) found little variation within a season in \(\delta^{13}C_r \) in boreal forests, recent work in coniferous forests of Oregon and Washington, USA, shows large (2–6‰) within-site seasonal variation in \(\delta^{13}C_r \), which correlates well with plant water status (Bowling, Fessenden and Ehleringer, unpubl. data). Whole-canopy photosynthetic discrimination appears to respond to moisture limitations in a manner consistent with leaf level observations. It is speculated that the isotope ratio of the heterotrophic component of ecosystem respiration (excluding the rhizosphere) is unlikely to change significantly based on short-term changes in photosynthetic discrimination, because the substrate for respiration does not change.

Gaudinski et al. (2000) used radiocarbon measurements to estimate that 59% of soil respiration at Harvard Forest was derived from carbon that resided in the plant/soil system for less than one year, and that the average age of carbon respired by heterotrophs was 8 years. If the heterotrophic component stays more or less constant, but the autotrophic component changes over a season or between years, then equilibrium is unlikely. Thus, a change in whole-canopy discrimination in response to moisture availability will alter the isotopic equilibrium of an ecosystem on a timescale of weeks to months. Direct measurements of \(^{13}CO_2 \) flux, rather than the indirect methods of Yakir & Wang (1996), Bowling et al. (1999a), and this study, are necessary to assess the validity of these assumptions.

Conclusions

In this study relevant theory has been developed and applied to measurements in a temperate deciduous forest in order to assess the utility of stable isotopes in ecosystem-scale studies of carbon dioxide and water vapour exchange. Stable isotopes of CO₂ can be used in combination with standard micrometeorological flux measurements to partition net ecosystem CO₂ exchange into photosynthetic and respiratory fluxes. Despite potential complications, the approach used was successful for \(^{13}CO_2 \) in a complex natural system. Expected diurnal patterns and magnitudes of \(F_A \) and \(F_R \) were obtained which were consistent with those from other approaches, and consistent with our understanding of these fluxes at the leaf level. Whole-canopy photosynthetic discrimination was lower than expected but was consistent with other estimates in the literature. This approach is quite sensitive to assessment of canopy conductance through its influence on \(\Delta \), and to assumptions made about the relationship between isotopic composition and CO₂ mole fraction.

Acknowledgements

We thank K. Wilson and D. Baldocchi for collecting and sharing their flux and meteorological data, D. Schindler and B. Logan for hard work and much enthusiasm in the field, and D. Yakir, J. White, J. Berry, J. Lloyd, P. Blanken and L. Scott for thoughtful discussions. C. Cook and G. Hund provided invaluable assistance with the isotopic measurements. This research was funded equally by TECO NSF grant IBN9814507 and the National Institute for Global Environmental Change through the U. S. Department of Energy (Cooperative Agreement DE-FC03-90ER61010). Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of NSF or DOE.

References

Appendix: solution of partitioning equations.
The formal combination of (1), (6), (8) and (9) can yield an equation for \(F_A \). First, solving (9) for \(C_i/C_a \), and substituting this into (8) yields

\[
\Delta = b_R + (b_R - a)F_A/(g_cC_a). \quad \text{(A1)}
\]

Next, this \(\Delta \) is substituted into (6), and collecting like terms

\[
\text{isoflux} = \delta^{13}C_R(f_R) + (\delta^{13}C_a - b_R)F_A - \left(\frac{b_R - a}{g_cC_a}\right)F_A^2. \quad \text{(A2)}
\]

Multiplying (1) by \(\delta^{13}C_R \) and subtracting from (A2) gives

\[
\text{isoflux} - \delta^{13}C_R\text{NEE} = (\delta^{13}C_a - b_R - \delta^{13}C_R)F_A - \left(\frac{b_R - a}{g_cC_a}\right)F_A^2. \quad \text{(A3)}
\]

which upon rearrangement yields the quadratic equation

\[
-\left(\frac{b_R - a}{g_cC_a}\right)F_A^2 + (\delta^{13}C_a - b_R - \delta^{13}C_R)F_A + (\delta^{13}C_R\text{NEE} - \text{isoflux}) = 0. \quad \text{(A4)}
\]

The solution to this equation is

\[
F_A = \frac{-\left(\delta^{13}C_a - b_R - \delta^{13}C_R\right) \pm \sqrt{\left(\delta^{13}C_a - b_R - \delta^{13}C_R\right)^2 - 4\left(\frac{b_R - a}{g_cC_a}\right)(\delta^{13}C_R\text{NEE} - \text{isoflux})}}{2\left(\frac{b_R - a}{g_cC_a}\right)}. \quad \text{(A5)}
\]

and only one of the two roots yields a realistic value for \(F_A \).