Seasonal cycle of carbon dioxide and its isotopic composition in an urban atmosphere: Anthropogenic and biogenic effects

D. E. Pataki, D. R. Bowling, and J. R. Ehleringer
Department of Biology, University of Utah, Salt Lake City, Utah, USA

[1] Atmospheric CO2 mixing ratios and carbon and oxygen isotope composition were measured at 18 m above the ground in Salt Lake City, Utah, United States, for a one-year period. Mixing ratios were highest in the wintertime with maximum values approaching 600 µmol mol⁻¹ during atmospheric inversions. Nighttime carbon and oxygen isotope ratios of source CO2 showed a seasonal pattern with isotopically depleted values in the wintertime and isotopically enriched values in the spring and summer. The effects of gasoline combustion, natural gas combustion, and biogenic respiration of plants and soils on CO2 mixing ratio were quantified with a mass balance calculation using dual carbon and oxygen isotopic tracers. The calculations showed large contributions of natural gas combustion in the winter and significant nighttime biogenic respiration in the spring and late summer/early fall. The isotope-tracer technique used shows promise for quantifying the impacts of urban processes on the isotopic composition of the atmosphere and partitioning urban CO2 sources into their component parts. INDEX TERMS: 0315 Atmospheric Composition and Structure: Biosphere/atmosphere interactions; 0345 Atmospheric Composition and Structure: Pollution—urban and regional (0305); 1040 Geochemistry: Isotopic composition/chemistry; 1610 Global Change: Atmosphere (0315, 0325); KEYWORDS: CO2 mixing ratio, carbon isotopes, oxygen isotopes, urban pollution, biosphere-atmosphere interactions, Keeling plots

1. Introduction

[2] The isotopic composition of atmospheric CO2 contains information about the magnitude and distribution of sources and sinks of carbon. Photosynthetic uptake of CO2, plant and soil respiration, biomass burning, and fossil fuel combustion impart carbon and oxygen isotope signals to the atmosphere that can be used as a tracer at various temporal and spatial scales [Francey et al., 1985; Fung et al., 1997; Keeling et al., 1989]. The urban contribution to the isotopic composition of the atmosphere has generally been represented by combining estimates of the isotopic composition of fossil fuel types with energy-use statistics [Andres et al., 2000; Tans, 1981]. Direct measurements of the isotopic composition of CO2 emissions in urban areas have occasionally been conducted [e.g., Clark-Thorne and Yapp, 2003; Florkowski et al., 1998; Friedman and Irsa, 1967; Takahashi et al., 2002; Zondervan and Meijer, 1996] and can provide important information about 1) local processes, including biological contributions to urban CO2 emissions, and 2) temporal and spatial variability in the isotopic composition of urban emissions.

[3] Biological and anthropogenic contributions to urban CO2 mixing ratios have been evaluated in a handful of previous studies applying stable and radioisotopes of carbon

\[c_T = c_A + c_S \] (1)

where \(c_T \) is the total CO2 mixing ratio, \(c_A \) is the background CO2 mixing ratio, and \(c_S \) is the mixing ratio originating from local sources. \(c_S \) has been further partitioned into anthropogenic (fossil fuel) and biogenic (plant/soil respiration) sources by utilizing the distinct \(^{13}\text{C} \) and \(^{18}\text{O} \) isotopic composition of each component. Previous short-term applications of this approach have found significant contributions of biological respiration to total urban CO2 mixing ratios [Meijer et al., 1997; Takahashi et al., 2001, 2002; Zondervan and Meijer, 1996].

[4] Here we use measurements of urban CO2 mixing ratios and isotopic composition to examine an alternate form of the mass balance model for partitioning urban CO2 emissions. In our initial approach, we have chosen to use the \(^{13}\text{C} \) and \(^{18}\text{O} \) tracers over \(^{14}\text{C} \) due to the relative feasibility and lower cost of stable isotope measurements in small gas volumes. Our application of these tracers differs from previous studies in that we apply the mass balance method of Keeling [1958, 1961] to estimate the carbon and oxygen isotopic composition of the integrated urban CO2
source once a week for a one-year period. Thus, we derive the seasonal cycle of the impact of urban processes on the isotopic composition of the atmosphere. We then construct a mass balance model to partition the total CO2 emission source into CO2 produced by biological respiration and combustion, which have distinct oxygen isotope ratios, and further partition CO2 produced by combustion into gasoline and natural gas components, which have distinct carbon isotope ratios.

2. Methods

2.1. Atmospheric Measurements

[5] In Salt Lake City, Utah, United States, CO2 mixing ratios were continuously monitored at 18 m above the ground on the University of Utah campus with an infrared gas analyzer (LI 7000, LI-COR Inc., Lincoln, NE, United States). The measurement location was about 3.5 km east of downtown Salt Lake City. A 500 m radius around the CO2 inlet mostly encompassed the University campus, as well as a residential neighborhood 300 m to the west. Sampled air was passed through a magnesium perchlorate (Mg(ClO4)2) desiccating trap. CO2-free air and WMO traceable calibration gas containing a known CO2 mixing ratio ranging from 400–420 μmol mol⁻¹ were separately introduced into the analyzer hourly to correct mixing ratios with recorded zero and span values. Two-minute running averages of CO2 mixing ratio were recorded every 5 minutes from January–December, 2002 on a datalogger (CR23x, Campbell Scientific Inc., Logan, UT, United States).

[6] For isotopic analysis, fifteen 100-ml air samples were collected in glass flasks weekly with an automated sampler described by Schauer et al. [2003]. Air samples were obtained at 18 m height from an inlet adjacent to the CO2 mixing ratio sampling described above. The sampler was programmed to fill flasks with dry sample air to obtain samples spanning a specific CO2 mixing ratio range (30–50 μmol mol⁻¹ depending on the time of year) within a single nighttime period, generally from midnight to 6:00 MST. If the specified range was not obtained, the samples were flushed and the nighttime sampling began again the next day. For comparative purposes, some samples were collected during discrete daytime morning (5:00–10:00) or evening (17:00–21:00) rush-hour periods in the wintertime. Samples were analyzed for oxygen and carbon isotope ratios of CO2 with an isotope ratio mass spectrometer (Delta S, Finnigan MAT, San Jose, CA, United States) as described by Ehleringer and Cook [1998]. CO2 and N2O were separated by gas chromatography, and resulting isotope values were corrected daily with known standards. The average daily precision of these measurements was 0.14% for carbon and 0.23% for oxygen. CO2 mixing ratios of the flask samples were then measured as described by Bowling et al. [2001].

2.2. Mass Balance Approach

[7] Keeling [1958, 1961] applied isotopic mass balance to equation (1) and derived a linear mixing model between c_A and the mixing ratio of a CO2 source (c_S):

\[\delta_T = c_A (\delta_A - \delta_S) (1/c_T) + \delta_S \]

where \(\delta_T, \delta_A, \) and \(\delta_S \) are the isotope ratio of the total CO2 mixing ratio, the background CO2, and the CO2 emitted from the source, respectively, expressed in \(\delta \) notation:

\[\delta = (R_{sample}/R_{standard} - 1) * 1000 \text{‰} \]

where R is the molar ratio of heavy to light isotopes. In this study, carbon isotope ratio (\(\delta^{13}C \)) is expressed relative to the V-PDB standard and oxygen isotope ratio (\(\delta^{18}O \)) is expressed relative to V-SMOW.

[8] This “Keeling plot“ method assumes that the isotopic composition of both the background and source CO2 remain constant during the sampling period [Miller and Tans, 2003; Pataki et al., 2003]. An advantage of this approach is that \(c_A, \delta_A, \) and \(\delta_S \) need not be specified in order to solve the mass balance for \(\delta_S \).

[9] Equation (2) was used to estimate both \(\delta^{13}C \) and \(\delta^{18}O \) of source CO2 for each set of 15 air samples collected. For simplicity, this analysis was limited to periods when photosynthesis was assumed to be negligible in wintertime and at night during the growing season. The Keeling plot intercept was calculated using geometric mean regression according to Pataki et al. [2003]. Outliers were removed if the absolute value of the residual for an individual data point was more than 3 standard deviations from the mean residual. Intercepts were discarded when the regression model was not significant at \(\alpha = 0.01 \) according to Flanagan et al. [1997] and Bowling et al. [2003b]. The standard error of the intercept was calculated by the ordinary least squares, “Model I” regression method [Sokal and Rohlf, 1995].

[10] We utilized the CO2 isotope and mixing ratio data collected in Salt Lake City to evaluate the advantages and limitations of deriving the isotopic composition of urban source CO2 with the Keeling plot method, and partitioning the total source into three component parts: gasoline combustion (\(c_G \)), combustion of natural gas (\(c_N \)), and biogenic respiration (\(c_R \)). We neglect the influence of coal in this application as there are no coal-fired power plants in Salt Lake City or the surrounding metropolitan area (Energy Information Administration, U.S. Department of Energy, http://www.eia.doe.gov). To solve for the contribution of the three remaining components, we applied the following mass balance:

\[f_R + f_G + f_N = 1 \]

\[\delta^{13}C_{R} f_R + \delta^{13}C_G f_G + \delta^{13}C_N f_N = \delta^{13}C_S \]

\[\delta^{18}O_{R} f_R + \delta^{18}O_G f_G + \delta^{18}O_N f_N = \delta^{18}O_S \]

where \(f_R = c_R/c_S, f_G = c_G/c_S, f_N = c_N/c_S, \) and \(c_S = c_R + c_G + c_N. \) The subscripts \(R, G, \) and \(N \) refer to respiration, gasoline combustion, and natural gas combustion, respectively. An assumption in this formulation is that \(f_R, f_G, \) and \(f_N \) remain constant during the sampling period for the determination of \(\delta^{13}C_S \) and \(\delta^{18}O_S \) from equation (2). If this condition is met, three urban sources of CO2 can be distinguished without estimating the isotopic composition of background air from remote measurements. In this approach, all isotope ratios are
3. Results and Discussion

[11] CO₂ mixing ratios were highest in the wintertime with nighttime maximal values reaching almost 600 μmol mol⁻¹ in January and February of 2002 (Figure 1). Peaks were observed during significant atmospheric inversion events. Nighttime average values ranged from approximately 390–480 μmol mol⁻¹ in the winter and 375–400 μmol mol⁻¹ in the spring and summer (Figure 1). Afternoon values in the spring and summer were commonly within 5 μmol mol⁻¹ of the background value of 372.2 μmol mol⁻¹ measured in Wendover, Utah, about 200 km west of Salt Lake City, in 2001 (U.S. National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory, Carbon Cycle Group).

[12] The nighttime buildup of CO₂ was used to derive δ¹³C and δ¹⁸O weekly by the Keeling plot intercept method throughout 2002. Representative Keeling plots for three time periods are shown in Figure 2. This figure illustrates a typical trend of greater variation and lower R-squared values in Keeling plots of δ¹⁸O during the growing season than for δ¹³C, as is often observed when CO₂ is influenced by biogenic respiration [Flanagan et al., 1997; Keeling, 1958, 1961]. δ¹³C is shown for the one year period in Figure 3 in relation to the isotopic composition of CO₂ produced by potential local sources. Wintertime values were variable, which was partially explained by diurnal changes in CO₂ sources. δ¹³C derived from data collected during rush-hour traffic conditions were 1.3‰ more
enriched (more positive in $\delta^{13}C$) on average than $\delta^{13}C_S$ at night ($p = 0.05$, Student’s t-test). Enriched ^{13}C values during rush hour are expected due to a larger influence of gasoline combustion on the total CO$_2$ source. Seasonally, $\delta^{13}C_S$ ranged from -30.0 to -37.2% in the winter and -27.4 to -32.4% in the spring/summer. A seasonal cycle was apparent, with depleted (more negative) values in the wintertime corresponding to increased combustion of natural gas, and enriched (more positive) values in the spring and summer that may be caused by either gasoline combustion or plant/soil respiration (the two are not distinguishable based on carbon isotopes alone).

[13] The seasonal cycle of $\delta^{18}O$ is shown in Figure 4 in relation to $\delta^{18}O$ produced by local CO$_2$ sources. In contrast to $\delta^{13}C_S$, $\delta^{18}O_S$ showed little variation in the winter, and highly enriched values in the spring and summer corresponding to the influence of plant and soil respiration. CO$_2$ released in plant and soil respiration equilibrates with leaf and soil water such that the $\delta^{18}O$ of respiration is predictable based on the Craig-Gordon model of evaporative enrichment and the equilibrium fractionation factor for exchange of oxygen between CO$_2$ and H$_2$O. The calculations of Craig and Gordon [1965] as modified by Flanagan et al. [1997] were followed here to model the isotopic composition of leaf and soil respiration. Model inputs were temperature and relative humidity measured at a MesoWest station on the University of Utah campus, a source water $\delta^{18}O$ value of -15% (the isotopic composition of the Salt Lake City municipal water supply and groundwater), and an average water vapor $\delta^{18}O$ value of -21% (data not shown). Because the urban forest in this semiarid region is sustained by irrigation and/or access to groundwater, we neglect the influence of local precipitation in this exercise. These calculations also neglect the influence of evaporative enrichment of soil water, which is dependent on the effective depth of CO$_2$-H$_2$O equilibration. This depth was found to be 5–15 cm by Miller et al. [1999] but has seldom been determined in other studies. We applied the theoretical kinetic fractionation in diffusion of CO$_2$ of 8.8\% for plant and soil respiration rather than the value of 7.2\% reported by Miller et al. [1999] in soil because of a similar lack of data for a variety of soils. For leaf water equilibration, we necessarily assumed steady-state conditions at night in the absence of other information such as leaf-level gas exchange data necessary to quantify Péclet and non-steady state effects [Cernusak et al., 2002; Farquhar and Lloyd, 1993].

[14] Despite the number of assumptions required to model $\delta^{18}O$ of plant and soil respiration, our approach provides the upper and lower bounds on the oxygen isotope ratio of total ecosystem respiration, and has been shown to successfully capture field measurements of $\delta^{18}O$ of leaf water and ecosystem respiration [Bowling et al., 2003a, 2003b; Flanagan et al., 1997, 1999; J. P. H. Ometto et al., Oxygen isotope ratios of waters and respired CO$_2$ in Amazonian forest and pasture ecosystems, submitted to Ecological Applications, 2003]. Here we apply these calculations toward interpreting $\delta^{18}O_S$ in Salt Lake City. In January and February of 2002, average nighttime air temperatures in Salt Lake City were -1.8°C. Biogenic respiration at these temperatures is unlikely to constitute a significant portion of urban CO$_2$ emissions relative to combustion, particularly aboveground. This is supported by the wintertime values for $\delta^{18}O_S$, which were $21.3 \pm 0.2\%$ (Figure 4). Interestingly, this value is not equivalent to the theoretical value for the oxygen isotope ratio of combustion, which is equal to $\delta^{18}O$ of atmospheric O$_2$ at 23.5\% [Kroopnick and Craig, 1972]. The observed offset could be due to the influence of wintertime soil respiration or to fractionation of oxygen in combustion, which have not been well investigated.

[15] As a first-order attempt to solve equations (4)–(6), we applied the annual cycle of $\delta^{13}C_S$ and $\delta^{18}O_S$ as represented by the polynomial fits in Figures 3 and 4, and

Figure 3. The carbon isotope ratio of the urban CO$_2$ source ($\delta^{13}C_S$) as estimated by the Keeling plot method. Open symbols were derived from nighttime data, and closed symbols were derived from rush hour data. Error bars show the standard error of the intercept. The shaded bars show the 95% confidence interval for the carbon isotope ratio of local CO$_2$ sources. Data for gasoline and natural gas combustion are taken from local measurements by S. Bush et al. (unpublished data), and data for ecosystem respiration are taken from Pataki et al. [2003]. The solid line is a 3rd order polynomial fit to the data.
estimates of the isotopic composition of potential local sources of CO2. $\delta^{13}C_G$ and $\delta^{13}C_N$ were measured in Salt Lake City and found to be -28.3 ± 0.1 and $-37.7 \pm 0.3\%$o, respectively (S. Bush et al., unpublished data). For simplicity, we assumed that $\delta^{18}O_G$ and $\delta^{18}O_N$ were equivalent to the $\delta^{18}O_S$ wintertime value of 21.3% and that wintertime soil respiration was negligible. $\delta^{13}C_R$ has been determined in a number of natural forests, but never in an urban ecosystem. Therefore we applied the average natural forest value of $-26.2 \pm 0.2\%$o from Pataki et al. [2003]. For $\delta^{18}O_R$, we applied an ecosystem respiration value consisting of 50% soil respiration and 50% leaf respiration, which is within the range of estimates from natural forests [e.g., Lavigne et al., 1997].

The results of applying the above end-members to equations (4)–(6) are shown in Figure 5. Calculated values of f_R, f_G, and f_N were multiplied by c_T to evaluate the contributions of each CO2 source to the total measured mixing ratio, c_T. The annual cycle of c_T was estimated from 2001 data collected by the NOAA CMDL Carbon Cycle Group in Wendover, Utah, 200 km west of Salt Lake City. The general trend of natural gas contributions to the nighttime CO2 mixing ratio was consistent with the use of natural gas as a primary heating source. Approximately 60% of the CO2 contributions from natural gas were modeled at this location. The annual cycle of background CO2 mixing ratio was estimated from monthly measurements in 2001 by the U.S. NOAA CMDL Carbon Cycle Group at the Wendover, Utah, flask network station. Contributions from gasoline combustion, natural gas combustion, and respiration were calculated from local CO2 mixing ratio measurements and equations (4)–(6).
Table 1. Sensitivity Analysis of Calculations of the Mean Fractional Contribution of Respiration (f_R), Gasoline Combustion (f_G), and Natural Gas Combustion (f_N) to the Total CO2 Source During Winter (January 1 to April 15) and the Growing Season (April 16 to November 15)\d\n
<table>
<thead>
<tr>
<th></th>
<th>January 1 to April 15</th>
<th>April 16 to November 15</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f_R</td>
<td>f_G</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.02</td>
<td>0.42</td>
</tr>
<tr>
<td>i) 1% depletion δ13C_R</td>
<td>0.02</td>
<td>0.42</td>
</tr>
<tr>
<td>ii) 1% depletion δ13C_G</td>
<td>0.02</td>
<td>0.47</td>
</tr>
<tr>
<td>iii) 1% depletion δ13C_N</td>
<td>0.02</td>
<td>0.47</td>
</tr>
<tr>
<td>iv) 30% soil respiration 70% plant respiration</td>
<td>0.01</td>
<td>0.42</td>
</tr>
<tr>
<td>v) 70% soil respiration 30% plant respiration</td>
<td>0.03</td>
<td>0.40</td>
</tr>
<tr>
<td>vi) 7.2% kinetic fractionation of soil diffusion</td>
<td>0.02</td>
<td>0.42</td>
</tr>
<tr>
<td>vii) 3% enrichment of soil water</td>
<td>0.02</td>
<td>0.42</td>
</tr>
<tr>
<td>viii) No enrichment of leaf water at night</td>
<td>0.00</td>
<td>0.42</td>
</tr>
</tbody>
</table>

\d Calculations are from equations (4) – (6). Baseline refers to the calculations shown in Figure 5 and described in the text. In analyses i–iii, the carbon isotope ratios of ecosystem respiration (δ13C_{R}), gasoline combustion (δ13C_{G}), or natural gas combustion (δ13C_{N}) were decreased by 1‰ from the baseline simulation. The remaining analyses are changes to the assumptions in the model of the oxygen isotope ratio of ecosystem respiration (δ18O_{R}). A dash indicates that a solution was less than 0 for much of the season; i.e., the solution was invalid.

\d Values of f_N were negative in April.

of CO2 originated from natural gas combustion in the winter at this location, with the contribution becoming negligible in mid-summer. Gasoline combustion remained a large CO2 source for much of the year. Biogenic plant and soil respiration had the largest effect in spring and late summer/fall, when respiration accounted for up to 60% of \(f_N \). This result was driven by the pattern of \(\delta^{13}C \) shown in Figure 4, which had a bimodal distribution. Although there was some scatter around this relationship and the polynomial fit shown approximates only the major features of the seasonal pattern, there may be a functional basis for a depression in biogenic respiration rates in mid-summer. This was an extremely hot and dry period when daytime vapor pressure deficits periodically exceeded 5 kPa and precipitation was negligible. The influence of high vapor pressure deficit on stomatal closure and soil evaporation in semiarid, yet irrigated, urban environments has not been well investigated. If the peaks in \(\delta^{18}O \) values shown in Figure 4 are robust, this may indicate that the early and late growing season are the optimal periods for photosynthetic activity and soil decomposition in the Salt Lake City urban ecosystem, a hypothesis that can be tested with physiological and soil measurements.

The results in Figure 5 are not intended to be a strict assessment of the contributions of combustion and respiration to the urban CO2 mixing ratio in 2002. Rather, we used this exercise as a means to examine a potentially powerful tool for assessing the isotopic composition of urban CO2 emissions and the contribution of biogenic processes to the urban carbon cycle. To assess the sensitivity of this technique to errors in the estimates of the isotopic composition of the CO2 sources, we conducted a series of sensitivity analyses. For each analysis, values of \(f_R \), \(f_G \), and \(f_N \) were re-calculated and averaged for two time periods: January 1 – April 15 when biological activity was low, and the growing season of April 16 – November 15. In the first three analyses, \(\delta^{13}C_R \), \(\delta^{13}C_G \), or \(\delta^{13}C_N \) were decreased by 1‰ - a relatively large change in the case of \(\delta^{13}C_G \) and \(\delta^{13}C_N \), which had small standard errors of 0.1 and 0.3, respectively, in local exhaust measurements (S. Bush et al., unpublished data). Shown in Table 1 are the results of these analyses (numbered i–iii), in which the 1‰ depletion generally caused changes in \(f_R, f_G \), and \(f_N \) of less than 15%, with the exception of the 1‰ change in \(\delta^{13}C_G \) during the growing season. In this case, \(f_N \) decreased by 24%. This indicates that local measurements of \(\delta^{13}C_G \) are an important component of this method, as the isotopic composition of petroleum shows significant geographical variation [Andres et al., 2000; Tans, 1981] and may not be captured adequately from mean literature values, leading to errors in the estimates of CO2 source contributions.

Sensitivity analyses were also conducted on several assumptions in the estimation of \(\delta^{18}O_R \). A large uncertainty in this method is in the proportions of above- and belowground respiration, which have varying isotopic compositions due to the influence of evaporative enrichment of leaf water on aboveground respiration. The contribution of each component to total \(\delta^{18}O_R \) varied from equal contributions in the initial calculations to 30% soil respiration and 70% aboveground plant respiration, and vice-versa. These results are shown in Table 1 as analyses vi–v. In the first case, applying an assumption of 30% soil respiration caused a 19% reduction in the contribution of \(f_N \) during the growing season. However, such small proportions of soil respiration to total ecosystem respiration are not typical in natural ecosystems [Goulden et al., 1996; Lavigne et al., 1997; Law et al., 1999, 2001; Xu et al., 2001], although we cannot exclude this possibility in an urban ecosystem. Contributions of soil respiration of up to 70% and greater have been reported in the literature [Goulden et al., 1996; Law et al., 1999, 2001; Xu et al., 2001]; however, applying 70% soil respiration to our calculations violated mass balance during growing season; that is, \(\delta^{18}O_S \) was more enriched than the most enriched possible source of CO2 for much of this period. This occurred because soil respiration is much less enriched in \(\delta^{18}O \) than leaf respiration, and the measurements of \(\delta^{18}O_S \) indicate that an enriched source must be present in this ecosystem.

We also altered the value of kinetic fractionation of soil CO2 from the theoretical value of 8.8‰ to 7.2‰ as reported by Miller et al. [1999] in analysis vi and applied an assumption of 3‰ evaporation enrichment of shallow soil.
moisture in analysis vii. Neither of these changes had large
effects on the results, although both violated mass balance
early in the growing season (Table 1). Finally, because
the extent of steady-state evaporative enrichment of leaf water
at night is not well known, we examined the end-member
case of no evaporative enrichment in analysis viii. This
assumption caused $\delta^{18}O_T$ to be less enriched than $\delta^{18}O_o$, violating the mass balance for much of the growing season
(Table 1). Therefore, an analysis of the valid solutions to
this mass balance approach can provide some constraints on
the acceptable range of values for unknowns with a high
degree of error.

[20] A number of the uncertainties in utilizing $\delta^{18}O$ and
$\delta^{13}C$ to partition urban CO$_2$ sources can be further
come with additional research. Measurements of the carbon
isotope ratio of urban plant/soil respiration and the oxygen
isotope ratio of leaf, stem, and soil water may be used to
validate the assumptions and modeling of $\delta^{13}C_T$ and $\delta^{18}O_T$.
Measurements of the absolute rates of above- and
below-ground respiration coupled with bottom-up estimates of
natural gas and gasoline combustion from fuel use statistics and
traffic data can be used to validate the results of the mass
balance calculation. Such a comparison may also help
determine whether current approaches for estimating the isotopic composition of regional and global fossil fuel
emissions sufficiently capture temporal and spatial variability
at the scales necessary for carbon cycle modeling. Previous studies have found mismatches between local
bottom-up inventories and atmospheric integration of fuel
combustion [Kue and Zimmerman, 1998] that illustrate the need
for further comparisons in a number of different regions, and for different locations within the same region.
Given the heterogeneous nature of land cover in urban areas, evaluating the spatial heterogeneity in these results
is a necessary next step.

4. Conclusions

[21] In this study, the seasonal cycle of $\delta^{13}C$ and $\delta^{18}O$ of
CO$_2$ emissions were characterized weekly for a one-year
period at the University of Utah campus in Salt Lake City.
Both isotopes showed depletion in the winter and enrichment
in the summer due to changes in the proportions of
natural gas combustion, gasoline combustion, and biogenic
respiration at different times of the year. These effects were
quantified with a mass balance calculation that solved for
the proportional contribution of each component to the total
CO$_2$ source. The results confirmed well to expected trends
of greater natural gas combustion in the winter and biogenic
respiration in the spring and summer.

[22] The strengths of utilizing the Keeling plot method for
partitioning urban CO$_2$ emissions are the potential to
evaluate the integrated effect of these emissions on the
atmosphere without the need to determine the isotopic
composition of background air. As has been noted in the
original application of the Keeling plot method, this
approach works well with $\delta^{13}C$ but cannot always be
applied to $\delta^{18}O$ [Keeling, 1958, 1961]. Varying proportions of
CO$_2$ sources containing distinct isotope ratios violate the
assumptions of the 2-ended mixing model and are more
common with oxygen than carbon isotopes, causing poor
relationships between $\delta^{18}O_T$ and $1/c_T$. In this study, several
Keeling plots were excluded from the analysis when P >
0.01, reducing the sample size available for evaluating the
seasonal cycle of $\delta^{18}O_T$. However, the alternative to the
Keeling plot method is to specify $\delta^{18}O_T$ from remote, non-
urban measurements, which may be problematic due to its
spatial and temporal variability [Zondervan and Meijer, 1996]. Where Keeling plot sampling can be limited to short
periods under steady-state conditions in the proportion of
CO$_2$ sources, determination of $\delta^{18}O_T$ provides a viable
alternative.

[23] Different forms of the mass balance model are
plausible and should be evaluated for their utility in using
the atmosphere as an integrator of urban processes. As
interest in the global carbon cycle and also regional and
local processes in urban and urbanizing regions further
develops, atmospheric isotope data will provide critical
information, particularly when combined with terrestrial
measurements. The methods described here are a potential
starting point for the application of long-term atmospheric
monitoring in urban areas.

[24] Acknowledgments. We thank A. Schauer, C. Cook, M. Lott,
C. Jensen, S. Bush, T. Dance, A. Allred, and W. Ike for their assistance, and
C.-T. Lai and S. Kammerdiener for their comments on an earlier version of
this manuscript. This study was supported by NSF grant 0215768 and
DOE-TCP grant DE-FG03-00ER63012. The lead author was supported by the
NASA Earth Science Enterprise through the Global Change and
Terrestrial Ecosystems (GCTE) core project of the International Geo-
sphere-Biosphere Programme (IGBP).

References

Andres, R. J., G. Marland, T. Boden, and S. Bischof, Carbon dioxide
emissions from fossil fuel consumption and cement manufacture,
1751–1991, and an estimate of their isotopic composition and latitudinal
distribution, in The Carbon Cycle, edited by T. M. L. Wigley and D. S.

Bowling, D. R., C. S. Cook, and J. R. Ehleringer, Technique to measure
CO$_2$ mixing ratio in small flasks with a bellows/IRGA system, Agric. For.

Bowling, D. R., N. G. McDowell, J. M. Welker, B. J. Bond, B. E. Law, and
J. R. Ehleringer, Oxygen isotope content of CO$_2$ in nocturnal ecosystem
respiration: I. Observations in forests along a precipitation transect in

Bowling, D. R., N. G. McDowell, J. M. Welker, B. J. Bond, B. E. Law, and
J. R. Ehleringer, Oxygen isotope content of CO$_2$ in nocturnal ecosystem
respiration: 2. Short-term dynamics of foliar and soil component fluxes in
an old-growth ponderosa pine forest, Global Biogeochem. Cycles, 17,

Cernusak, L. A., J. S. Pate, and G. D. Farquhar, Diurnal variation in the
stable isotope composition of water and dry matter in fruiting Lupinus
angustifolius under field conditions, Plant Cell Environ., 25, 898–907,
2002.

Clark-Thorne, S. T., and C. J. Yapp, Stable carbon isotope constraints on
mixing and mass balance of CO$_2$ in an urban atmosphere: Dallas metropo-

Craig, H., and L. I. Gordon, Deuterium and oxygen 18 variations in the
ocean and marine atmosphere, in Stable Isotopes in Oceanographic
Studies and Paleotemperatures, edited by E. Toniazzi, pp. 9–130,

Ehleringer, J. R., and C. S. Cook, Carbon and oxygen isotope ratios of
ecosystem respiration along an Oregon conifer transect: Preliminary
observations based on small-flask sampling, Tree Physiol., 18, 513–

Farquhar, G. D., and J. Lloyd, Carbon and oxygen isotope effects in the
exchange of carbon dioxide between plants and the atmosphere, in Stable
Isotopes and Plant-Carbon-Water Relations, edited by J. R. Ehleringer,
A. E. Hall, and G. D. Farquhar, pp. 47–70, Academic, San Diego, Calif.,
1993.

Flanagan, L. B., J. R. Brooks, G. T. Varney, and J. R. Ehleringer, Discrim-
ation against C^{18}O during photosynthesis and the oxygen isotope
ratio of respired CO$_2$ in boreal forest ecosystems, Global Biogeochem.

D. R. Bowling, J. R. Ehleringer, and D. E. Pataki, Department of Biology, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA. (pataki@biology.utah.edu)