Epistatic and Combinatorial Effects of Pigmentary Gene Mutations in the Domestic Pigeon

Eric T. Domyan,1 Michael W. Guernsey,1 Zev Kronenberg,2 Shreyas Krishnan,3 Raymond E. Boissy,4 Anna I. Vickrey,1 Clifford Rodgers,2 Pamela Cassidy,5,6 Sancy A. Leachman,5,6 John W. Fondon III,3 Mark Yandell,2 and Michael D. Shapiro1,*

1Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
2Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
3Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
4Department of Dermatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
5Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
6Department of Dermatology, Oregon Health & Science University, Portland, OR 97239, USA

Summary

Understanding the molecular basis of phenotypic diversity is a critical challenge in biology, yet we know little about the mechanistic effects of different mutations and epistatic relationships among loci that contribute to complex traits. Pigmentation genetics offers a powerful model for identifying mutations underlying diversity and for determining how additional complexity emerges from interactions among loci. Centuries of artificial selection in domestic rock pigeons (Columba livia) have cultivated tremendous variation in plumage pigmentation through the combined effects of dozens of loci. The dominance and epistatic hierarchies of key loci governing this diversity are known through classical genetic studies [1–6], but their molecular identities and the mechanisms of their genetic interactions remain unknown. Here we identify protein-coding and cis-regulatory mutations in Tyrp1, Sox10, and Slc45a2 that underlie classical color phenotypes of pigeons and present a mechanistic explanation of their dominance and epistatic relationships. We also find unanticipated allelic heterogeneity at Tyrp1 and Sox10, indicating that color variants evolved repeatedly though mutations in the same genes. These results demonstrate how a spectrum of coding and regulatory mutations in a small number of genes can interact to generate substantial phenotypic diversity in a classic Darwinian model of evolution [7].

Results and Discussion

In the domestic rock pigeon (Columba livia), hundreds of years of accumulated experience by amateur and professional geneticists provide strong evidence that many complex color traits can be partitioned into combined effects of multiple loci, and that the same loci control similar traits across breeds [6]. The classical major color locus (B) is a sex-linked gene that confers one of three “base” colors [1–5]: wild-type blue/black (B⁺), ash-red (B⁰), and brown (b) (Figures 1A–1C). The B⁺ allele is dominant to B⁻ and b, and B is recessive to the others. Blue/black and brown phenotypes result from high amounts of eumelanin and low amounts of phaeomelanin; melanin ratios are reversed in ash-red birds [5]. In addition, the autosomal recessive mutation recessive red (e) acts epistatically to the B locus to elevate phaeomelanin production, generating red plumage color irrespective of B locus genotype [2, 6] (Figure 1D). Mutant alleles of a third locus, the sex-linked recessive dilute (d), interact additively with B and e to lighten plumage color and further enrich pigmentation diversity [1, 2, 8] (Figures 1E–1H). This detailed Mendelian understanding of key phenotypes provides a robust foundation to investigate how genes and alleles interact to generate color variation. However, the molecular basis of this diversity—including the identities of genes underlying major pigmentation variants and a mechanistic explanation for their intra- and interlocus interactions—remains unknown [9, 10].

Multiple Mutations in Tyrp1 Underlie Base Color Variation in Pigeons

Previously, we reported whole-genome sequences for 41 rock pigeons [11] with diverse color phenotypes. To investigate the molecular identity of the B color locus, we compared the genomes of 6 ash-red pigeons to 26 blue/black pigeons for coding changes associated with pigmentation phenotypes using the Variant Annotation, Analysis, and Search Tool (VAAST) [12]. A single gene achieved genome-wide significance: tyrosinase-related protein 1 (Tyrp1) (p = 1.3 × 10⁻⁶; see Figure S1A available online), which encodes a key enzyme in the melanin synthesis pathway. All blue/black pigeons were homozygous G on the Tyrp1 sense strand at position 214991 on genomic scaffold 6 (B⁺ allele), whereas ash-red pigeons were hetero- or homozygous for C (B⁰ allele), consistent with the dominant mode of inheritance of ash-red. The B⁰ mutation causes an alanine-to-proline substitution at codon 23 (A23P), corresponding to the cleavage site of the signal peptide (Figure 2A). In addition to finding a single haplotype containing the B⁺ allele in our whole-genome panel (Figure S1B), we found a perfect association between the dominant B⁰ mutation and the ash-red phenotype in an additional 49 ash-red birds from 20 breeds, and 105 blue/black or brown birds from 36 breeds (Figure 2B). These results suggest that the ash-red mutation occurred only once and spread species-wide through selective breeding, similar to our previous finding that the same mutation in EphB2 underlies the head crest phenotype in multiple pigeon breeds [11].

Quantitative RT-PCR analysis revealed that Tyrp1 mRNA levels from developing feathers of B⁺ and B⁰ pigeons were indistinguishable (Figure S1C); however, the location of the B⁰ mutation at the highly conserved cleavage site of the signal peptide (Figure S1E) suggested that cleavage efficiency might be affected. We therefore expressed N- and C-terminally tagged B⁺ and B⁰ versions of TYRP1 protein in cell culture, and we found that cleavage efficiency was dramatically reduced by the B⁰ mutation (relative efficiency: B⁺ = 1 ± 0.18, B⁰ = 0.14 ± 0.04; n = 4 independent transfections each;
Unlike the mouse melanic phenotype of ash-red pigeons is unknown. However, similar accumulation of cytotoxins contributes to the pheomelanin to eumelanin production. In contrast, Tyrp1 loss-of-function alleles b^1–b^3 cause brown pigment production, consistent with findings in other vertebrates [19].

Recurrent Deletions of a Sox10 Enhancer Underlie Recessive Red

In addition to the dominant, sex-linked B^A allele, the autosomal mutation recessive red (e) acts epistatically to B to increase pheomelanogenesis and decrease eumelanogenesis (Figure 1D). VAAST scans for the e locus did not identify a strong candidate, suggesting that an unannotated structural variant, such as a large insertion or deletion, might underlie this phenotype. To identify candidates for e, we compared expression of several genes involved in melanin biosynthesis and found that the transcription factor Sox10 and one of its target genes, Tyrp1 (the B locus), were significantly downregulated in feathers of recessive red birds (Figure 3A) (Sox10 relative expression: blue/black = 1 ± 0.62; recessive red = 0.14 ± 0.07, p = 0.001; Tyrp1 relative expression: blue/black = 1 ± 0.556, recessive red = 0.0001 ± 0.00006, p = 0.002; n = 6 for each). Other melanin biosynthesis genes did not show altered transcript levels (Figure S2A), suggesting that a mutation directly or indirectly affecting Sox10 expression might underlie the recessive red phenotype.

Deletions of a conserved Sox10 enhancer result in pigmentation defects in other vertebrates, including a lack of pigmentation in mouse and increased pheomelanin production in chicken [20, 21]. Alignment of the pigeon reference genome assembly (a recessive red Danish tumbler [11]) upstream of Sox10 to the orthologous regions of the chicken and zebra finch genomes identified a 7.5 kb deletion in the pigeon genome (Figures 3B and S2B). Furthermore, four recessive red birds in our genome resequencing panel—but no wild-type birds—were homozygous for this deletion. Importantly, the deletions in pigeon, chicken, and mouse all span a conserved enhancer element that drives Sox10 expression in melanocytes [20, 23].

To test for broader association between the pigeon Sox10 enhancer deletion and recessive red, we genotyped 41 recessive red pigeons from 19 breeds and 103 wild-type pigeons from 45 breeds. We found that 21 recessive red birds (but no wild-type birds) were homozygous for the deletion harbored by the reference genome (e^1 allele; Figures 3B and 3C). An additional 17 of the recessive red birds (but no
wild-type birds) were homozygous for a second, 2.5 kb deletion (e2) that partially overlaps e1, and the remaining three birds were heterozygous e1e2 (Figures 3B and 3C). Since both pigeon deletions span the Sox10 melanocyte enhancer, we predicted that the reduction in Sox10 expression in recessive red birds was due to a cis-regulatory change. We therefore assayed allele-specific expression of E+ and e2 alleles of Sox10 in E+e2 heterozygous birds, and we found that the e2 allele was expressed at only \(\frac{1}{10} \) of E+ levels (SNP1 = 0.126 \(\pm \) 0.055, SNP2 = 0.056 \(\pm \) 0.043, SNP3 = 0.127 \(\pm \) 0.059; p < 0.0001 for each, n = 10 E+e2 birds) (Figure 3D). Since in heterozygotes both the E+ and e2 alleles...
are in the same cellular environment, this experiment confirmed that the reduction in Sox10 expression from the e^2 allele is due to a cis-acting mutation. Together, these genetic and expression results implicate the deletion of a Sox10 melanocyte enhancer as the molecular basis of recessive red in domestic pigeons (Figure 3B). These results also demonstrate that the E (extension) loci of mammals (Mc1r) and pigeons (Sox10) are not orthologous [5, 9, 24–26]. Moreover, similar to the brown phenotype, recessive red appears to have evolved more than once in pigeons. While we do not observe obvious phenotypic distinctions between e^1 and e^2 homozygotes, it is possible that the different deletions generate subtly different effects on color by altering other unidentified regulatory elements [27].

The epistatic relationship of e to B is now easily reconciled in light of their molecular identities and mutations: Sox10 directly regulates Tyrp1 expression in melanocytes [28] (Figure 3A), explaining how loss of Sox10 expression abrogates phenotypic effects of Tyrp1 genotypes. Interestingly, the recessive red phenotype caused by Sox10 downregulation is distinct from the brown phenotype of Tyrp1 loss-of-function mutants, possibly owing to contributions of additional Sox10 regulatory targets or residual b allele activity.

family 45 member 2 (Slc45a2, p = 2.65 × 10^{-6}; Figure S3A), which is associated with pigmentation phenotypes in diverse vertebrates, including other birds [22, 29–32], but is not orthologous to the dilute locus in mouse (Myo5a) [33]. In pigeons, the d mutation causes a histidine-to-arginine substitution (H341R) at a highly conserved intramembrane residue of SLC45A2 (Figure 3E and S3C). We genotyped an additional 59 diluted birds from 26 breeds and 67 nondiluted birds from 41 breeds and found a strong (but not perfect) association between d genotypes and color intensity under a recessive model (Fisher’s exact test, p < 2.2 × 10^{-16}) (Figure 3F). Fourteen birds not homozygous for d had diluted feather color, and one homozygote was reported to have nondiluted color. However, several similar loci can cause either lightened (e.g., milky, reduced, and faded) or darkened (e.g., dirty, sooty, and smoky) pigmentation in pigeons [6], and it is expected that a broad hobbyist-identified sample should include birds with varied genetic bases for color intensity.

Mutations and Color Traits Cosegregate in a Controlled Cross
As an independent test of our association analyses, we examined cosegregation of pigmentation phenotypes and our three

Figure 3. Sox10 and Slc45a2 Are the recessive red (e) and dilute (d) Loci of Domestic Pigeons

(A) qRT-PCR analysis of Sox10 and Tyrp1 in wild-type versus recessive red feathers (see Figure S2 for additional genes). Boxes in (A) and (D) span first to third quartiles; bars extend to minimum and maximum observed values; black line indicates median. **p ≤ 0.002.

(B) Schematic of deletions upstream of Sox10 in recessive red pigeons (e^1, e^2), dark-brown (db) chicken [20], and Hry mutant mouse [21]. Red asterisk denotes a conserved element deleted in all three species. Conservation track is based on Multiz alignment to chicken, human, mouse, rat, opossum, Xenopus tropicalis, and zebrafish in UCSC Genome Browser (http://genome.ucsc.edu/chicken assembly v2.1 used as framework).

(C) Histogram of genotypes of pigeons displaying wild-type or recessive red phenotypes.

(D) Expression of SNPs in the e^2 allele relative to the E^+ allele of Sox10 in feathers of E^+e^2 heterozygous pigeons. Blue dashed line indicates normalized expression level of E^+ allele. **p < 0.0001.

(E) Schematic of SLC45A2 protein with putative d mutation in red. Mutations in chicken and quail associated with lightened feather color are indicated in gray. Adapted from [22].

(F) Histogram of genotypes of pigeons displaying wild-type or dilute phenotypes.

Missense Mutation in Slc45a2 Is Associated with Color Dilution

While the B and E loci affect pigment color, the sex-linked recessive dilute (d) reduces pigment quantity, further enriching pigmentation diversity [8] (Figures 1E–1H). To identify candidates for d, we compared the genomes of 5 birds with diluted feather color and 31 birds with nondiluted pigment intensity using VAASS. A single gene achieved genome-wide significance: solute carrier family 45 member 2 (Slc45a2, p = 2.65 × 10^{-6}; Figure S3A), which is associated with pigmentation phenotypes in diverse vertebrates, including other birds [22, 29–32], but is not orthologous to the dilute locus in mouse (Myo5a) [33]. In pigeons, the d mutation causes a histidine-to-arginine substitution (H341R) at a highly conserved intramembrane residue of SLC45A2 (Figures 3E and S3C). We genotyped an additional 59 diluted birds from 26 breeds and 67 nondiluted birds from 41 breeds and found a strong (but not perfect) association between d genotypes and color intensity under a recessive model (Fisher’s exact test, p < 2.2 × 10^{-16}) (Figure 3F). Fourteen birds not homozygous for d had diluted feather color, and one homozygote was reported to have nondiluted color. However, several other loci can cause either lightened (e.g., milky, reduced, and faded) or darkened (e.g., dirty, sooty, and smoky) pigmentation in pigeons [6], and it is expected that a broad hobbyist-identified sample should include birds with varied genetic bases for color intensity.

Error Rate in qRT-PCR

While the B and E loci affect pigment color, the sex-linked recessive dilute (d) reduces pigment quantity, further enriching pigmentation diversity [8] (Figures 1E–1H). To identify candidates for d, we compared the genomes of 5 birds with diluted feather color and 31 birds with nondiluted pigment intensity using VAASS. A single gene achieved genome-wide significance: solute carrier family 45 member 2 (Slc45a2, p = 2.65 × 10^{-6}; Figure S3A), which is associated with pigmentation phenotypes in diverse vertebrates, including other birds [22, 29–32], but is not orthologous to the dilute locus in mouse (Myo5a) [33]. In pigeons, the d mutation causes a histidine-to-arginine substitution (H341R) at a highly conserved intramembrane residue of SLC45A2 (Figures 3E and S3C). We genotyped an additional 59 diluted birds from 26 breeds and 67 nondiluted birds from 41 breeds and found a strong (but not perfect) association between d genotypes and color intensity under a recessive model (Fisher’s exact test, p < 2.2 × 10^{-16}) (Figure 3F). Fourteen birds not homozygous for d had diluted feather color, and one homozygote was reported to have nondiluted color. However, several other loci can cause either lightened (e.g., milky, reduced, and faded) or darkened (e.g., dirty, sooty, and smoky) pigmentation in pigeons [6], and it is expected that a broad hobbyist-identified sample should include birds with varied genetic bases for color intensity.

Mutations and Color Traits Cosegregate in a Controlled Cross

As an independent test of our association analyses, we examined cosegregation of pigmentation phenotypes and our three

Figure 3. Sox10 and Slc45a2 Are the recessive red (e) and dilute (d) Loci of Domestic Pigeons

(A) qRT-PCR analysis of Sox10 and Tyrp1 in wild-type versus recessive red feathers (see Figure S2 for additional genes). Boxes in (A) and (D) span first to third quartiles; bars extend to minimum and maximum observed values; black line indicates median. **p ≤ 0.002.

(B) Schematic of deletions upstream of Sox10 in recessive red pigeons (e^1, e^2), dark-brown (db) chicken [20], and Hry mutant mouse [21]. Red asterisk denotes a conserved element deleted in all three species. Conservation track is based on Multiz alignment to chicken, human, mouse, rat, opossum, Xenopus tropicalis, and zebrafish in UCSC Genome Browser (http://genome.ucsc.edu/chicken assembly v2.1 used as framework).

(C) Histogram of genotypes of pigeons displaying wild-type or recessive red phenotypes.

(D) Expression of SNPs in the e^2 allele relative to the E^+ allele of Sox10 in feathers of E^+e^2 heterozygous pigeons. Blue dashed line indicates normalized expression level of E^+ allele. **p < 0.0001.

(E) Schematic of SLC45A2 protein with putative d mutation in red. Mutations in chicken and quail associated with lightened feather color are indicated in gray. Adapted from [22].

(F) Histogram of genotypes of pigeons displaying wild-type or dilute phenotypes.
candidate loci in progeny of a male pigeon doubly heterozygous for B^a and d alleles ($B^aB^a, D^dE^dE^d$) mated to two recessive yellow females ($B^+b^+b^+, d^+d^+d^+$; females have heterogametic sex chromosomes and are therefore hemizygous at the sex-linked B and D loci). As anticipated, segregation of the ash-red (dominant) and dilute phenotypes was observed in the F_1 and F_2 generations, whereas recessive red was observed only in the F_2. We genotyped all three generations for the candidate mutations in $Tyrp1$, $Sox10$, and $Slc45a2$ and found complete cosegregation between alleles at these loci and their respective pigmentation phenotypes (Figure 4A). Coupled with our genetic association results, these transmission genetics data strongly support the molecular identities of the classical B^a (and b), e, and d alleles as mutations in $Tyrp1$, $Sox10$, and $Slc45a2$, respectively.

Few Loci Generate Many Phenotypes

Similar to the genetic architecture of dog coat morphology [34], a relatively small number of loci generate a wide range of plumage color phenotypes in pigeons (Figure 4B). We found that coding changes at the base color locus B result in a neomorphic dominant allele (B^a, ash-red) that interferes with melanosome formation and localization of melanogenesis to cause one derived phenotype, and multiple recessive, putative null alleles (b^1, b^2, brown) that underlie another phenotype. The e mutation is epistatic to B genotypes due to a regulatory mutation in $Sox10$, which is a transcriptional regulator of $Tyrp1$. A mutation at the d locus influences the color of birds of all genotypes at B and e by reducing the quantity of pigment produced, generating an additional layer of genetic complexity to both natural pigmentation diversity and skin disease in humans, including melanoma risk [39, 40]. Thus, by elucidating the complex interactions among these loci, we enrich our mechanistic understanding of adaptive and nonadaptive variation across species.

Accession Numbers

Sequence data reported in this paper have been deposited in GenBank with the accession numbers KJ023250–KJ023253.

Supplemental Information

Supplemental Information includes three figures, Supplemental Experimental Procedures, and one table and can be found with this article online at http://dx.doi.org/10.1016/j.cub.2014.01.020.

Acknowledgments

All animal protocols were approved by the Institutional Animal Care and Use Committees of the University of Utah (protocols 09-04015 and 10-05007) and the University of Texas at Arlington (protocol 09-009). We thank members of the Shapiro and Fondon labs for sample collection assistance. This work was supported by NIH fellowships T32HD07491 and F32GM103077 (E.T.D.); NIH training grant T32GM007464 (Z.K.); an NSF EDEI internship (A.I.V.); Huntsman Cancer Foundation and the Tom C. Mathews Jr. Familial Melanoma Research Clinic Endowment (S.A.L.); NIH grants R01HG004694, R01GM104390, and ARRA GO RC2HG005619 (M.Y.); and a Burroughs Wellcome Fund Career Award in the Biomedical Sciences and NSF CAREER DEB1149160 (M.D.S.). We acknowledge computer time allocation from the University of Utah Center for High Performance Computing, Trisha Wittkopp for technical advice, and Dale Clayton for husbandry assistance. We gratefully acknowledge years of mentoring and assistance by master breeder Brad R. Child, and we dedicate this work to his memory.
References

